环境化学
吸附
环境修复
沉积物
生物累积
吸附
环境科学
化学
污染
地质学
生态学
生物
地貌学
有机化学
作者
Mohamed H. Ahmed,M.A.H. Johir,Robert G. McLaughlan,Wenshan Guo,Bentuo Xu
标识
DOI:10.1016/j.scitotenv.2020.141251
摘要
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are contaminants of great concern due to their wide-spread occurrence and persistence in the environments (i.e., in water, soil and sediment) and potential toxicology even at very low concentration. The main focus of this review is on the PFASs in soil and sediments. More specifically, this review systematically examines the occurrence and toxicological effects with associated risks, fate (i.e., PFASs adsorption by soil and sediment, transportation and transformation, and bioaccumulation), and remediation practices of PFASs in soil and sediment. Various models and equations such as fugacity-based multimedia fate and hydrodynamic models are used to study the fate, transport, and transformation of PFASs. Among different remediation practices, sorption is the dominant process for the removal of PFASs from soil and sediments. Results also indicate that PFASs adsorption onto activated carbon decrease with the increase of carbon chain length in the PFASs. The longer-chain PFASs have larger partition coefficient values than shorter-chained PFASs. Sorption of PFASs to soil and sediments are mainly governed by different electrostatic interactions, hydrogen bonds formation, hydrophobic interactions, organic content in soil and sediments, and ligand exchange. Other technology such as thermal treatment might be potential in the removal of PAFSs, but need further study to elucidate a conclusion. Finally, the associated challenges and future outlook have been included.
科研通智能强力驱动
Strongly Powered by AbleSci AI