已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dancing with Trump in the Stock Market

可解释性 股票市场 计算机科学 深度学习 库存(枪支) 证券交易所 金融市场 可用性 人工智能
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
被引量:5
标识
DOI:10.1145/3403578
摘要

It is always deemed crucial to identify the key factors that could have significant impact on the stock market trend. Recently, an interesting phenomenon has emerged that some of President Trump’s posts in Twitter can surge into a dominant role on the stock market for a certain time period, although studies along this line are still in their infancy. Therefore, in this article, we study whether and how this new-rising information can help boost the performance of stock market prediction. Specifically, we have found that the echoing reinforced effect of financial news with Trump’s market-related tweets can influence the market movement—that is, some of Trump’s tweets directly impact the stock market in a short time, and the impact can be further intensified when it echoes with other financial news reports. Along this line, we propose a deep information echoing model to predict the hourly stock market trend, such as the rise and fall of the Dow Jones Industrial Average. In particular, to model the discovered echoing reinforced impact, we design a novel information echoing module with a gating mechanism in a sequential deep learning framework to capture the fused knowledge from both Trump’s tweets and financial news. Extensive experiments have been conducted on the real-world U.S. stock market data to validate the effectiveness of our model and its interpretability in understanding the usability of Trump’s posts. Our proposed deep echoing model outperforms other baselines by achieving the best accuracy of 60.42% and obtains remarkable accumulated profits in a trading simulation, which confirms our assumption that Trump’s tweets contain indicative information for short-term market trends. Furthermore, we find that Trump’s tweets about trade and political events are more likely to be associated with short-term market movement, and it seems interesting that the impact would not degrade as time passes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助zhang采纳,获得10
1秒前
烟雨江南发布了新的文献求助10
1秒前
Fkbetter完成签到,获得积分10
3秒前
4秒前
君君发布了新的文献求助30
5秒前
Lida发布了新的文献求助100
6秒前
6秒前
Honeydukes发布了新的文献求助30
7秒前
宇婷发布了新的文献求助10
9秒前
Tatw完成签到 ,获得积分10
10秒前
10秒前
小蘑菇应助小全采纳,获得10
18秒前
在水一方应助可乐采纳,获得10
18秒前
君君发布了新的文献求助200
18秒前
珍狗发布了新的文献求助10
20秒前
宇婷完成签到,获得积分10
21秒前
畅快之柔发布了新的文献求助30
21秒前
寒冷的绿真完成签到 ,获得积分10
22秒前
碌卡完成签到,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
25秒前
今后应助冷静的方盒采纳,获得10
27秒前
高高雪枫应助ohooo采纳,获得20
29秒前
尼古丁珍完成签到,获得积分10
30秒前
畅快之柔完成签到,获得积分10
31秒前
31秒前
33秒前
33秒前
好好学习完成签到 ,获得积分10
36秒前
阿九发布了新的文献求助10
36秒前
小全发布了新的文献求助10
40秒前
41秒前
GrindSeason完成签到,获得积分10
43秒前
科目三应助爱听歌灯泡采纳,获得10
44秒前
44秒前
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733246
求助须知:如何正确求助?哪些是违规求助? 3277407
关于积分的说明 10002404
捐赠科研通 2993270
什么是DOI,文献DOI怎么找? 1642581
邀请新用户注册赠送积分活动 780542
科研通“疑难数据库(出版商)”最低求助积分说明 748892