Multi-modal AD classification via self-paced latent correlation analysis

计算机科学 人工智能 机器学习 模式 秩相关 模式识别(心理学) 回归 约束(计算机辅助设计) 情态动词 秩(图论) 核(代数) 多核学习 相关性 支持向量机 核方法 统计 数学 社会学 几何学 组合数学 化学 高分子化学 社会科学
作者
Qi Zhu,Ning Yuan,Jiashuang Huang,Xiaoke Hao,Daoqiang Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:355: 143-154 被引量:34
标识
DOI:10.1016/j.neucom.2019.04.066
摘要

As an irreparable brain disease, Alzheimer's disease (AD) seriously impairs human thinking and memory. The accurate diagnosis of AD plays an important role in the treatment of patients. Many machine learning methods have been widely used in classification of AD and its early stage. An increasing number of studies have found that multi-modal data provide complementary information for AD prediction problem. In this paper, we propose multi-modal rank minimization with self-paced learning for revealing the latent correlation across different modalities. In the proposed method, we impose low-rank constraint on the regression coefficient matrix, which is composed of regression coefficient vectors of all modalities. Meanwhile, we adaptively evaluate the contribution of each sample to the fusion model by self-paced learning (SPL). Finally, we utilize multiple-kernel learning (MKL) to classify the multi-modal data. Experiments on the Alzheimer's disease Neuroimaging Initiative (ADNI) databases show that the proposed method obtains better classification performance than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助gaos采纳,获得10
刚刚
顾矜应助四火采纳,获得10
刚刚
人福药业发布了新的文献求助30
刚刚
liuguohua126发布了新的文献求助10
1秒前
分子遗传小菜鸟完成签到,获得积分10
1秒前
洛尚发布了新的文献求助10
1秒前
英俊的铭应助咳咳采纳,获得10
2秒前
科研通AI2S应助嗯呢采纳,获得10
2秒前
姆姆发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
11发布了新的文献求助10
5秒前
大个应助limof采纳,获得10
5秒前
6秒前
竹筏过海应助chen采纳,获得50
7秒前
7秒前
schoolboy发布了新的文献求助10
7秒前
完美世界应助洛尚采纳,获得10
7秒前
苹果萧发布了新的文献求助10
8秒前
钟是一梦发布了新的文献求助10
9秒前
Lucas应助Light采纳,获得10
10秒前
10秒前
10秒前
李健的粉丝团团长应助Ll采纳,获得10
10秒前
10秒前
JQKing完成签到,获得积分10
11秒前
11秒前
zs完成签到 ,获得积分10
11秒前
11秒前
11完成签到,获得积分20
11秒前
一定会更好的完成签到,获得积分10
12秒前
Pangsj发布了新的文献求助10
12秒前
姆姆完成签到,获得积分10
12秒前
领导范儿应助落晨采纳,获得10
12秒前
13秒前
善良的安卉完成签到,获得积分10
13秒前
淡定吃吃发布了新的文献求助10
14秒前
yyf关闭了yyf文献求助
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740