脑电图
计算机科学
模式
张量(固有定义)
功能磁共振成像
人工智能
模式识别(心理学)
传感器融合
联轴节(管道)
机器学习
数学
心理学
神经科学
社会学
工程类
纯数学
机械工程
社会科学
作者
Christos Chatzichristos,Mike E. Davies,Javier Escudero,Eleftherios Kofidis,Sergios Theodoridis
标识
DOI:10.23919/eusipco.2018.8553077
摘要
Data fusion refers to the joint analysis of multiple datasets which provide complementary views of the same task. In this paper, the problem of jointly analyzing electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) data is considered. Analyzing both EEG and fMRI measurements is highly beneficial for studying brain function because these modalities have complementary spatiotemporal resolutions: EEG offers good temporal resolution while fMRI offers good spatial resolution. The fusion methods reported so far ignore the underlying multi-way nature of the data in at least one of the modalities and/or rely on very strong assumptions concerning the relation among the respective data sets. In this paper, these two points are addressed by adopting tensor models for both modalities and by following a soft coupling approach to implement the fused analysis. To cope with the subject variability in EEG, the PARAFAC2 model is adopted. The results obtained are compared against those of Parallel ICA and hard coupling alternatives in both simulated and real data. Our results confirm the superiority of tensorial methods over methods based on ICA. In scenarios that do not meet the assumptions underlying hard coupling, the advantage of soft coupled decompositions is clearly demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI