Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism

杂原子 化学 催化作用 石墨烯 光化学 活性氧 机制(生物学) 氧气 组合化学 有机化学 材料科学 生物化学 纳米技术 认识论 哲学 戒指(化学)
作者
Zilong Song,Mengxuan Wang,Zheng Wang,Yufang Wang,Ruoyu Li,Yuting Zhang,Chao Liu,Liu Ye,Bingbing Xu,Fei Qi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:53 (9): 5337-5348 被引量:155
标识
DOI:10.1021/acs.est.9b01361
摘要

To guide the design of novel graphene-based catalysts in catalytic ozonation for micropollutant degradation, the mechanism of catalytic ozonation with heteroatom-doped graphene was clarified. Reduced graphene oxide doped with nitrogen, phosphorus, boron, and sulfur atoms (N-, P-, B-, and S-rGO) were synthesized, and their catalytic ozonation performances were evaluated in the degradation of refractory organics and bromate elimination simultaneously. Doping with heteroatoms, except sulfur, significantly improved the catalytic ozonation activity of graphene. Introducing sulfur atoms destroyed the stability of graphene during ozonation, with the observed partial performance improvement caused by surface adsorption. Degradation pathways for selected refractory organics were proposed based on the intermediates identified using high-resolution Orbitrap mass spectroscopy and gas chromatographic–mass spectroscopy. Three and six new unopened intermediates were identified in benzotriazole and p-chlorobenzoic acid degradation, respectively. Roles of chemical functional groups, doped atoms, free electron, and delocalized π electron of heteroatom-doped graphene in catalytic ozonation were identified, and contributions of these active centers to the formation of reactive oxygen species (ROS), including hydroxyl radicals, superoxide radicals, singlet oxygen, and H2O2, were evaluated. A mechanism for catalytic ozonation by heteroatom-doped graphene was proposed for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXL完成签到,获得积分10
刚刚
N_wh完成签到,获得积分10
刚刚
安静的棉花糖完成签到 ,获得积分10
刚刚
闾丘曼安完成签到,获得积分10
刚刚
尼卡应助suy采纳,获得10
刚刚
刚刚
1秒前
思源应助xyz采纳,获得10
1秒前
1秒前
中华有为发布了新的文献求助10
2秒前
2秒前
FashionBoy应助wwww采纳,获得10
2秒前
2秒前
大方嵩发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
猪猪发布了新的文献求助10
4秒前
单薄白薇发布了新的文献求助10
4秒前
豆子完成签到,获得积分10
5秒前
通~发布了新的文献求助10
6秒前
橘子哥完成签到,获得积分10
6秒前
mnm发布了新的文献求助10
7秒前
柔弱凡松发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
SHDeathlock发布了新的文献求助50
8秒前
乐乐应助hu970采纳,获得10
8秒前
单薄白薇完成签到,获得积分10
10秒前
陈杰发布了新的文献求助10
10秒前
10秒前
10秒前
小张张发布了新的文献求助10
10秒前
乐乐应助YAN采纳,获得10
11秒前
迷惘墨香完成签到 ,获得积分10
12秒前
12秒前
Cynthia发布了新的文献求助30
12秒前
共享精神应助shenyanlei采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762