杂原子
化学
催化作用
石墨烯
光化学
活性氧
机制(生物学)
氧气
组合化学
有机化学
材料科学
生物化学
纳米技术
认识论
哲学
戒指(化学)
作者
Zilong Song,Mengxuan Wang,Zheng Wang,Yufang Wang,Ruoyu Li,Yuting Zhang,Chao Liu,Liu Ye,Bingbing Xu,Fei Qi
标识
DOI:10.1021/acs.est.9b01361
摘要
To guide the design of novel graphene-based catalysts in catalytic ozonation for micropollutant degradation, the mechanism of catalytic ozonation with heteroatom-doped graphene was clarified. Reduced graphene oxide doped with nitrogen, phosphorus, boron, and sulfur atoms (N-, P-, B-, and S-rGO) were synthesized, and their catalytic ozonation performances were evaluated in the degradation of refractory organics and bromate elimination simultaneously. Doping with heteroatoms, except sulfur, significantly improved the catalytic ozonation activity of graphene. Introducing sulfur atoms destroyed the stability of graphene during ozonation, with the observed partial performance improvement caused by surface adsorption. Degradation pathways for selected refractory organics were proposed based on the intermediates identified using high-resolution Orbitrap mass spectroscopy and gas chromatographic–mass spectroscopy. Three and six new unopened intermediates were identified in benzotriazole and p-chlorobenzoic acid degradation, respectively. Roles of chemical functional groups, doped atoms, free electron, and delocalized π electron of heteroatom-doped graphene in catalytic ozonation were identified, and contributions of these active centers to the formation of reactive oxygen species (ROS), including hydroxyl radicals, superoxide radicals, singlet oxygen, and H2O2, were evaluated. A mechanism for catalytic ozonation by heteroatom-doped graphene was proposed for the first time.
科研通智能强力驱动
Strongly Powered by AbleSci AI