Algebraic shortcuts for leave-one-out cross-validation in supervised network inference

计算机科学 机器学习 推论 人工智能 成对比较 核(代数) 交叉验证 数据挖掘 线性模型 数学 组合数学
作者
Michiel Stock,Tapio Pahikkala,Antti Airola,Willem Waegeman,Bernard De Baets
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:18
标识
DOI:10.1093/bib/bby095
摘要

Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models. The machine learning techniques with the algebraic shortcuts are implemented in the RLScore software package: https://github.com/aatapa/RLScore.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助XKeee采纳,获得30
2秒前
An完成签到,获得积分20
2秒前
bin发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
liu应助冷傲小蕊采纳,获得10
3秒前
不是sf完成签到,获得积分10
4秒前
pharmstudent完成签到,获得积分10
4秒前
2hi发布了新的文献求助10
4秒前
5秒前
cj完成签到 ,获得积分10
6秒前
莫离完成签到,获得积分10
6秒前
chenm0333042发布了新的文献求助10
8秒前
傅宣发布了新的文献求助10
8秒前
丑鸭应助SYLH采纳,获得60
9秒前
卡布奇诺完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
10秒前
巴拉拉发布了新的文献求助10
10秒前
张张张___完成签到,获得积分10
10秒前
10秒前
haiyan完成签到 ,获得积分10
11秒前
不抛弃不放弃完成签到,获得积分10
11秒前
可爱的函函应助微昆界采纳,获得10
11秒前
yun完成签到 ,获得积分10
13秒前
smile完成签到,获得积分10
13秒前
俊逸的奇异果完成签到,获得积分10
14秒前
14秒前
爱瞳之翼发布了新的文献求助10
15秒前
钱家炜完成签到 ,获得积分10
16秒前
16秒前
16秒前
16秒前
18秒前
我爱学习发布了新的文献求助10
19秒前
20秒前
20秒前
细腻的秋天完成签到 ,获得积分10
21秒前
柠檬九分酸完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154