Algebraic shortcuts for leave-one-out cross-validation in supervised network inference

计算机科学 机器学习 推论 人工智能 成对比较 核(代数) 交叉验证 数据挖掘 线性模型 数学 组合数学
作者
Michiel Stock,Tapio Pahikkala,Antti Airola,Willem Waegeman,Bernard De Baets
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:18
标识
DOI:10.1093/bib/bby095
摘要

Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models. The machine learning techniques with the algebraic shortcuts are implemented in the RLScore software package: https://github.com/aatapa/RLScore.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏嬴儿完成签到,获得积分10
刚刚
深情安青应助王了了采纳,获得50
1秒前
leo发布了新的文献求助10
1秒前
你好呀发布了新的文献求助20
1秒前
hyhyhyhy发布了新的文献求助10
2秒前
2秒前
3秒前
朴实海亦完成签到,获得积分10
3秒前
zys2001mezy应助数学情缘采纳,获得30
4秒前
4秒前
shaoming完成签到,获得积分10
7秒前
8秒前
Elvira完成签到,获得积分10
9秒前
鳗鱼凡波发布了新的文献求助10
9秒前
紫沐寒发布了新的文献求助10
9秒前
开心的盼望完成签到 ,获得积分10
10秒前
11秒前
细心浩阑发布了新的文献求助10
11秒前
11秒前
zhongyi完成签到 ,获得积分10
12秒前
15秒前
yar应助luo采纳,获得10
15秒前
koito发布了新的文献求助10
15秒前
15秒前
大个应助余杭村王小虎采纳,获得10
16秒前
懒羊羊发布了新的文献求助10
16秒前
17秒前
17秒前
宁_宁发布了新的文献求助10
17秒前
17秒前
Jun关闭了Jun文献求助
19秒前
dyyy发布了新的文献求助10
20秒前
思源应助why采纳,获得10
22秒前
Lee发布了新的文献求助10
22秒前
22秒前
22秒前
宗嘻嘻发布了新的文献求助10
22秒前
23秒前
丘比特应助yyy124采纳,获得10
24秒前
细心浩阑完成签到,获得积分20
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540