Refining interaction search through signed iterative Random Forests

随机森林 计算机科学 人工智能 理论(学习稳定性) 阈值 特征(语言学) 集合(抽象数据类型) 机器学习 桥接(联网) 过度拟合 空(SQL) 数据挖掘 人工神经网络 哲学 程序设计语言 图像(数学) 语言学 计算机网络
作者
Karl Kumbier,Sumanta Basu,James B. Brown,S Celniker,Bin Yu
标识
DOI:10.1101/467498
摘要

Abstract Advances in supervised learning have enabled accurate prediction in biological systems governed by complex interactions among biomolecules. However, state-of-the-art predictive algorithms are typically “black-boxes,” learning statistical interactions that are difficult to translate into testable hypotheses. The iterative Random Forest (iRF) algorithm took a step towards bridging this gap by providing a computationally tractable procedure to identify the stable, high-order feature interactions that drive the predictive accuracy of Random Forests (RF). Here we refine the interactions identified by iRF to explicitly map responses as a function of interacting features. Our method, signed iRF (s-iRF), describes “subsets” of rules that frequently occur on RF decision paths. We refer to these “rule subsets” as signed interactions. Signed interactions share not only the same set of interacting features but also exhibit similar thresholding behavior, and thus describe a consistent functional relationship between interacting features and responses. We describe stable and predictive importance metrics (SPIMs) to rank signed interactions in terms of their stability, predictive accuracy, and strength of interaction. For each SPIM, we define null importance metrics that characterize its expected behavior under known structure. We evaluate our proposed approach in biologically inspired simulations and two case studies: predicting enhancer activity and spatial gene expression patterns. In the case of enhancer activity, s-iRF recovers one of the few experimentally validated high-order interactions and suggests novel enhancer elements where this interaction may be active. In the case of spatial gene expression patterns, s-iRF recovers all 11 reported links in the gap gene network. By refining the process of interaction recovery, our approach has the potential to guide mechanistic inquiry into systems whose scale and complexity is beyond human comprehension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2316690509完成签到 ,获得积分10
1秒前
wada3n发布了新的文献求助10
2秒前
包容的忆灵完成签到 ,获得积分10
2秒前
无辜的行云完成签到 ,获得积分0
3秒前
调皮从筠完成签到,获得积分10
6秒前
yzhilson完成签到 ,获得积分10
10秒前
H-kevin.完成签到 ,获得积分10
14秒前
称心翠容完成签到,获得积分10
15秒前
手帕很忙完成签到,获得积分10
16秒前
康康舞曲完成签到 ,获得积分10
20秒前
金枪鱼子发布了新的文献求助10
21秒前
Garfieldlilac完成签到,获得积分20
23秒前
小张完成签到 ,获得积分10
28秒前
从容傲柏完成签到,获得积分10
29秒前
稳重乌冬面完成签到 ,获得积分10
31秒前
乐悠悠完成签到 ,获得积分10
33秒前
稳重母鸡完成签到 ,获得积分10
35秒前
董石美完成签到,获得积分20
39秒前
糖宝完成签到 ,获得积分10
42秒前
兰月满楼完成签到 ,获得积分10
43秒前
HMR完成签到 ,获得积分10
43秒前
Harlotte完成签到 ,获得积分10
46秒前
端庄代荷完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
49秒前
加油完成签到 ,获得积分10
49秒前
小学生学免疫完成签到 ,获得积分10
50秒前
金枪鱼子发布了新的文献求助10
50秒前
yuanletong完成签到 ,获得积分10
51秒前
ybwei2008_163完成签到,获得积分20
53秒前
MRQ发布了新的文献求助10
53秒前
wada3n完成签到,获得积分10
56秒前
快乐的蓝完成签到 ,获得积分10
56秒前
昏睡的蟠桃应助韦老虎采纳,获得50
57秒前
比比谁的速度快应助Yjj采纳,获得20
58秒前
isaiah1986完成签到,获得积分10
1分钟前
634301059完成签到 ,获得积分10
1分钟前
雨后完成签到 ,获得积分10
1分钟前
善学以致用应助薛言采纳,获得10
1分钟前
1分钟前
SYLH应助现代玉米采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015585
求助须知:如何正确求助?哪些是违规求助? 3555572
关于积分的说明 11318138
捐赠科研通 3288762
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015