Refining interaction search through signed iterative Random Forests

随机森林 计算机科学 人工智能 理论(学习稳定性) 阈值 特征(语言学) 集合(抽象数据类型) 机器学习 桥接(联网) 过度拟合 空(SQL) 数据挖掘 人工神经网络 哲学 程序设计语言 图像(数学) 语言学 计算机网络
作者
Karl Kumbier,Sumanta Basu,James B. Brown,S Celniker,Bin Yu
标识
DOI:10.1101/467498
摘要

Abstract Advances in supervised learning have enabled accurate prediction in biological systems governed by complex interactions among biomolecules. However, state-of-the-art predictive algorithms are typically “black-boxes,” learning statistical interactions that are difficult to translate into testable hypotheses. The iterative Random Forest (iRF) algorithm took a step towards bridging this gap by providing a computationally tractable procedure to identify the stable, high-order feature interactions that drive the predictive accuracy of Random Forests (RF). Here we refine the interactions identified by iRF to explicitly map responses as a function of interacting features. Our method, signed iRF (s-iRF), describes “subsets” of rules that frequently occur on RF decision paths. We refer to these “rule subsets” as signed interactions. Signed interactions share not only the same set of interacting features but also exhibit similar thresholding behavior, and thus describe a consistent functional relationship between interacting features and responses. We describe stable and predictive importance metrics (SPIMs) to rank signed interactions in terms of their stability, predictive accuracy, and strength of interaction. For each SPIM, we define null importance metrics that characterize its expected behavior under known structure. We evaluate our proposed approach in biologically inspired simulations and two case studies: predicting enhancer activity and spatial gene expression patterns. In the case of enhancer activity, s-iRF recovers one of the few experimentally validated high-order interactions and suggests novel enhancer elements where this interaction may be active. In the case of spatial gene expression patterns, s-iRF recovers all 11 reported links in the gap gene network. By refining the process of interaction recovery, our approach has the potential to guide mechanistic inquiry into systems whose scale and complexity is beyond human comprehension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcx发布了新的文献求助10
刚刚
石头完成签到,获得积分10
1秒前
包容的剑完成签到 ,获得积分10
2秒前
笨笨千亦完成签到 ,获得积分10
2秒前
3秒前
嘻嘻哈哈嘻嘻哈哈完成签到,获得积分10
3秒前
乐山乐水完成签到,获得积分10
4秒前
端庄的强炫完成签到,获得积分10
5秒前
姚美阁完成签到 ,获得积分10
5秒前
好困应助糍粑鱼采纳,获得10
6秒前
哈哈哈哈怪完成签到,获得积分10
6秒前
kingwhitewing完成签到,获得积分10
6秒前
Jasper应助renovel采纳,获得10
6秒前
兴钬完成签到,获得积分10
6秒前
7秒前
777发布了新的文献求助10
7秒前
乐山乐水发布了新的文献求助10
7秒前
9秒前
万柏祺完成签到,获得积分10
10秒前
10秒前
11秒前
屋子完成签到,获得积分10
11秒前
11秒前
ljw完成签到,获得积分10
12秒前
kiuikiu完成签到,获得积分10
12秒前
ljj完成签到 ,获得积分10
12秒前
kiuikiu发布了新的文献求助10
15秒前
Minjalee完成签到,获得积分0
15秒前
寂静之森完成签到,获得积分20
15秒前
舒洛完成签到,获得积分10
15秒前
白子双完成签到,获得积分10
16秒前
lei发布了新的文献求助10
17秒前
qsh完成签到 ,获得积分10
18秒前
师桐完成签到,获得积分10
18秒前
会飞的猪完成签到,获得积分10
18秒前
赘婿应助zhangyuan采纳,获得10
18秒前
18秒前
乌啦啦完成签到,获得积分10
19秒前
yyy完成签到,获得积分10
21秒前
mary完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757