背包问题
旅行商问题
强化学习
启发式
组合优化
计算机科学
人工神经网络
数学优化
集合(抽象数据类型)
欧几里德几何
2-选项
最优化问题
连续背包问题
人工智能
数学
几何学
程序设计语言
作者
Irwan Bello,Hieu Pham,Quoc V. Le,Mohammad Norouzi,Samy Bengio
出处
期刊:Cornell University - arXiv
日期:2016-11-29
被引量:208
摘要
This paper presents a framework to tackle combinatorial optimization problems using neural networks and reinforcement learning. We focus on the traveling salesman problem (TSP) and train a recurrent network that, given a set of city coordinates, predicts a distribution over different city permutations. Using negative tour length as the reward signal, we optimize the parameters of the recurrent network using a policy gradient method. We compare learning the network parameters on a set of training graphs against learning them on individual test graphs. Despite the computational expense, without much engineering and heuristic designing, Neural Combinatorial Optimization achieves close to optimal results on 2D Euclidean graphs with up to 100 nodes. Applied to the KnapSack, another NP-hard problem, the same method obtains optimal solutions for instances with up to 200 items.
科研通智能强力驱动
Strongly Powered by AbleSci AI