已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cytokeratin-Supervised Deep Learning for Automatic Recognition of Epithelial Cells in Breast Cancers Stained for ER, PR, and Ki-67

细胞角蛋白 免疫组织化学 病理 Ki-67 数字化病理学 H&E染色 乳腺癌 染色 增殖指数 医学 癌症 人工智能 计算机科学 内科学
作者
Mira Valkonen,Jorma Isola,Onni Ylinen,Ville Muhonen,Anna Saxlin,Teemu Tolonen,Matti Nykter,Pekka Ruusuvuori
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 534-542 被引量:50
标识
DOI:10.1109/tmi.2019.2933656
摘要

Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor infiltrating stroma and inflammatory cells. Here, we developed a deep learning based digital mask for automated epithelial cell detection using fluoro-chromogenic cytokeratin-Ki-67 double staining and sequential hematoxylin-IHC staining as training material. A partially pre-trained deep convolutional neural network was fine-tuned using image batches from 152 patient samples of invasive breast tumors. Validity of the trained digital epithelial cell masks was studied with 366 images captured from 98 unseen samples, by comparing the epithelial cell masks to cytokeratin images and by visual evaluation of the brightfield images performed by two pathologists. A good discrimination of epithelial cells was achieved (AUC of mean ROC = 0.93; defined as the area under mean receiver operating characteristics), and well in concordance with pathologists' visual assessment (4.01/5 and 4.67/5). The effect of epithelial cell masking on the Ki-67 labeling index was substantial. 52 tumor images initially classified as low proliferation (Ki-67 < 14%) without epithelial cell masking were re-classified as high proliferation (Ki-67 ≥ 14%) after applying the deep learning based epithelial cell mask. The digital epithelial cell masks were found applicable also to IHC of ER and PR. We conclude that deep learning can be applied to detect carcinoma cells in breast cancer samples stained with conventional brightfield IHC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
于夏旋完成签到,获得积分10
3秒前
大模型应助小荷采纳,获得10
5秒前
斯文败类应助djbj2022采纳,获得30
6秒前
马龙发布了新的文献求助10
7秒前
小马甲应助54132123采纳,获得10
8秒前
xzy完成签到 ,获得积分10
9秒前
10秒前
小伟发布了新的文献求助10
10秒前
11秒前
笨笨发布了新的文献求助10
11秒前
12秒前
Akim应助研友_Z1xbgn采纳,获得10
13秒前
yxl01yxl完成签到,获得积分10
14秒前
附子硫磺发布了新的文献求助30
15秒前
随性随缘随命完成签到 ,获得积分10
17秒前
17秒前
18秒前
djbj2022发布了新的文献求助30
22秒前
大水发布了新的文献求助10
22秒前
23秒前
马龙完成签到,获得积分10
24秒前
dreamer应助TT采纳,获得10
27秒前
27秒前
兔子完成签到,获得积分20
27秒前
琉璃苣完成签到,获得积分10
29秒前
Luoling完成签到 ,获得积分10
32秒前
azithromycin发布了新的文献求助20
33秒前
口天口发布了新的文献求助20
36秒前
研友_VZG7GZ应助63采纳,获得10
36秒前
36秒前
小伟完成签到,获得积分10
36秒前
科研通AI2S应助袁..采纳,获得10
37秒前
38秒前
38秒前
mm完成签到,获得积分10
43秒前
45秒前
45秒前
54132123发布了新的文献求助10
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271324
求助须知:如何正确求助?哪些是违规求助? 2910528
关于积分的说明 8354703
捐赠科研通 2580929
什么是DOI,文献DOI怎么找? 1403922
科研通“疑难数据库(出版商)”最低求助积分说明 656038
邀请新用户注册赠送积分活动 635468