How to facilitate knowledge diffusion in complex networks: The roles of network structure, knowledge role distribution and selection rule

选择(遗传算法) 相互依存 知识管理 计算机科学 相关性(法律) 过程(计算) 扩散 光学(聚焦) 数据科学 人工智能 政治学 热力学 操作系统 光学 物理 法学
作者
Tong Qiao,Wei Shan,Mingli Zhang,Chen Liu
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:47: 152-167 被引量:43
标识
DOI:10.1016/j.ijinfomgt.2019.01.016
摘要

The diffusion of knowledge within organizations provides opportunities for interpersonal co-operation, improves creative ability and therefore leads to competitive advantage. Focus of prior literature on knowledge diffusion has been on identifying factors that influence individuals' behavioral intentions to seek and share knowledge. However, knowledge diffusion as an enigmatic, emergent and organizational-level process is more than the simple aggregation of individual attributes and needs to be further investigated. Accordingly, this study focuses on three distinct system-level factors, i.e., architectures of connections among individuals, distributions of knowledge roles and designs of selection mechanisms and analyses their effects on knowledge diffusion. To be more specific, we examine three distinct knowledge roles: seekers, contributors and brokers. We also distinguish between three types of selection mechanisms: objective selection mechanisms, feedback-based selection mechanisms and random selection mechanisms. By conducting agent-based simulations on four representative networks, i.e., regular networks, random networks, small-world networks and scale-free networks, our results show that the optimal knowledge diffusion performance can be achieved on scale-free networks where all agents implement objective mechanisms and show characteristics of brokers. Moreover, our results (a) highlight the significance of brokers, (b) illustrate the superiority of objective selection rules and (c) demonstrate that scale-free networks provide an optimal framework for knowledge diffusion. Furthermore, we also find the interdependent relevance of these three factors to knowledge diffusion and propose a qualitative explanation of these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆头发布了新的文献求助10
1秒前
若水发布了新的文献求助200
2秒前
2秒前
3秒前
子川发布了新的文献求助10
3秒前
大头娃娃没下巴完成签到,获得积分10
5秒前
liyuchen完成签到,获得积分10
5秒前
CipherSage应助Lxxx_7采纳,获得10
6秒前
烟花应助永远少年采纳,获得10
6秒前
meng发布了新的文献求助10
8秒前
科研通AI5应助贪吃的猴子采纳,获得10
10秒前
10秒前
可爱的彩虹完成签到,获得积分10
10秒前
小确幸完成签到,获得积分10
10秒前
彭于晏应助毛毛虫采纳,获得10
11秒前
LilyChen完成签到 ,获得积分10
11秒前
Owen应助Su采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
yyyy关注了科研通微信公众号
13秒前
Jane完成签到 ,获得积分10
14秒前
14秒前
14秒前
kento发布了新的文献求助30
14秒前
Akim应助balzacsun采纳,获得10
15秒前
狼来了aas发布了新的文献求助10
15秒前
16秒前
didi完成签到,获得积分10
16秒前
嘻嘻发布了新的文献求助10
18秒前
冲冲冲完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824