Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow

计算机科学 傅里叶变换 卷积神经网络 人工神经网络 卷积(计算机科学) 人工智能 点扩散函数 算法 光传递函数 模式识别(心理学) 光学 数学 物理 数学分析
作者
Shaowei Jiang,Kaikai Guo,Jun Liao,Guoan Zheng
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:9 (7): 3306-3306 被引量:100
标识
DOI:10.1364/boe.9.003306
摘要

Fourier ptychography is a recently developed imaging approach for large field-of-view and high-resolution microscopy. Here we model the Fourier ptychographic forward imaging process using a convolutional neural network (CNN) and recover the complex object information in a network training process. In this approach, the input of the network is the point spread function in the spatial domain or the coherent transfer function in the Fourier domain. The object is treated as 2D learnable weights of a convolutional or a multiplication layer. The output of the network is modeled as the loss function we aim to minimize. The batch size of the network corresponds to the number of captured low-resolution images in one forward/backward pass. We use a popular open-source machine learning library, TensorFlow, for setting up the network and conducting the optimization process. We analyze the performance of different learning rates, different solvers, and different batch sizes. It is shown that a large batch size with the Adam optimizer achieves the best performance in general. To accelerate the phase retrieval process, we also discuss a strategy to implement Fourier-magnitude projection using a multiplication neural network model. Since convolution and multiplication are the two most-common operations in imaging modeling, the reported approach may provide a new perspective to examine many coherent and incoherent systems. As a demonstration, we discuss the extensions of the reported networks for modeling single-pixel imaging and structured illumination microscopy (SIM). 4-frame resolution doubling is demonstrated using a neural network for SIM. The link between imaging systems and neural network modeling may enable the use of machine-learning hardware such as neural engine and tensor processing unit for accelerating the image reconstruction process. We have made our implementation code open-source for researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshineyl发布了新的文献求助10
刚刚
1q完成签到,获得积分10
刚刚
李爱国应助留胡子的靖儿采纳,获得10
1秒前
hfgeyt完成签到,获得积分10
1秒前
鬼眼刀狂发布了新的文献求助10
1秒前
1秒前
Leach完成签到 ,获得积分10
2秒前
impulsive发布了新的文献求助20
2秒前
3秒前
John完成签到,获得积分10
3秒前
11111完成签到,获得积分10
3秒前
Lyue完成签到,获得积分10
3秒前
GGGGGG果果发布了新的文献求助10
3秒前
miaomiao应助汪哈七采纳,获得10
3秒前
Jenlisa完成签到 ,获得积分10
4秒前
慕青应助轩1采纳,获得10
4秒前
打打应助喜喜采纳,获得10
5秒前
5秒前
77发布了新的文献求助10
5秒前
5秒前
叉叉茶完成签到,获得积分10
6秒前
adkdad完成签到,获得积分10
6秒前
牛奶拌可乐完成签到 ,获得积分10
7秒前
wilson完成签到,获得积分10
8秒前
爆米花应助王小夏采纳,获得10
8秒前
8秒前
天天开心发布了新的文献求助10
9秒前
铅笔995完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
asdasdas发布了新的文献求助10
10秒前
WPP完成签到,获得积分10
11秒前
yyawkx完成签到,获得积分10
11秒前
紫z紫完成签到 ,获得积分10
11秒前
Hello应助想睡觉的猫采纳,获得10
12秒前
Garrett完成签到 ,获得积分10
12秒前
12秒前
dandan发布了新的文献求助10
13秒前
YH完成签到,获得积分20
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060