Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow

计算机科学 傅里叶变换 卷积神经网络 人工神经网络 卷积(计算机科学) 人工智能 点扩散函数 算法 光传递函数 模式识别(心理学) 光学 数学 物理 数学分析
作者
Shaowei Jiang,Kaikai Guo,Jun Liao,Guoan Zheng
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:9 (7): 3306-3306 被引量:100
标识
DOI:10.1364/boe.9.003306
摘要

Fourier ptychography is a recently developed imaging approach for large field-of-view and high-resolution microscopy. Here we model the Fourier ptychographic forward imaging process using a convolutional neural network (CNN) and recover the complex object information in a network training process. In this approach, the input of the network is the point spread function in the spatial domain or the coherent transfer function in the Fourier domain. The object is treated as 2D learnable weights of a convolutional or a multiplication layer. The output of the network is modeled as the loss function we aim to minimize. The batch size of the network corresponds to the number of captured low-resolution images in one forward/backward pass. We use a popular open-source machine learning library, TensorFlow, for setting up the network and conducting the optimization process. We analyze the performance of different learning rates, different solvers, and different batch sizes. It is shown that a large batch size with the Adam optimizer achieves the best performance in general. To accelerate the phase retrieval process, we also discuss a strategy to implement Fourier-magnitude projection using a multiplication neural network model. Since convolution and multiplication are the two most-common operations in imaging modeling, the reported approach may provide a new perspective to examine many coherent and incoherent systems. As a demonstration, we discuss the extensions of the reported networks for modeling single-pixel imaging and structured illumination microscopy (SIM). 4-frame resolution doubling is demonstrated using a neural network for SIM. The link between imaging systems and neural network modeling may enable the use of machine-learning hardware such as neural engine and tensor processing unit for accelerating the image reconstruction process. We have made our implementation code open-source for researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助ting5260采纳,获得10
刚刚
小惠惠发布了新的文献求助30
刚刚
隐形曼青应助@@@采纳,获得10
1秒前
1秒前
超帅的南珍完成签到,获得积分10
1秒前
沉默的八宝粥完成签到,获得积分10
1秒前
l991215y发布了新的文献求助10
1秒前
sunrase完成签到,获得积分10
1秒前
ercong_604完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
inno发布了新的文献求助10
3秒前
周浩宇发布了新的文献求助10
3秒前
4秒前
丘比特应助陶醉无敌采纳,获得10
4秒前
4秒前
萍萍发布了新的文献求助10
4秒前
严智杰完成签到,获得积分20
4秒前
大蛋老师应助Jane采纳,获得10
5秒前
情怀应助Jane采纳,获得10
5秒前
5秒前
5秒前
直率书包发布了新的文献求助10
5秒前
Jasper应助小巧向秋采纳,获得10
5秒前
Xx丶完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
jlj发布了新的文献求助10
8秒前
youoii完成签到 ,获得积分10
8秒前
DD完成签到,获得积分10
8秒前
FashionBoy应助满意的丹蝶采纳,获得10
9秒前
淡定可乐发布了新的文献求助10
9秒前
xuan发布了新的文献求助10
9秒前
9秒前
耶耶完成签到,获得积分10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587207
求助须知:如何正确求助?哪些是违规求助? 4670321
关于积分的说明 14782456
捐赠科研通 4622355
什么是DOI,文献DOI怎么找? 2531197
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066