卡尔曼滤波器
差别隐私
约束(计算机辅助设计)
计算机科学
信号(编程语言)
运动学
控制理论(社会学)
职位(财务)
国家(计算机科学)
滤波器(信号处理)
数学
算法
人工智能
计算机视觉
物理
经典力学
控制(管理)
程序设计语言
经济
几何学
财务
出处
期刊:Springer briefs in electrical and computer engineering
日期:2020-01-01
卷期号:: 55-75
被引量:26
标识
DOI:10.1007/978-3-030-41039-1_5
摘要
This chapter is concerned with the design of model-based differentially private filters, when the privacy-sensitive signal to be processed can be modeled as the output of a linear finite-dimensional system with publicly known parameters. Such models can capture for example known physical laws that govern the behavior of the input signal, e.g., a kinematic model linking position and velocity measurements obtained from individual users. In the absence of privacy constraint, Kalman filtering provides a solution to the problem of estimating the state of the system while minimizing the mean square error. We adapt here this filter to accommodate differential privacy constraints, for various scenarios involving either individual or collective signals.
科研通智能强力驱动
Strongly Powered by AbleSci AI