Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility

材料科学 结晶 无定形固体 离子电导率 分析化学(期刊) 魔角纺纱 快离子导体 玻璃化转变 核磁共振波谱 结晶学 化学工程 核磁共振 物理化学 化学 电解质 聚合物 复合材料 工程类 物理 色谱法 电极
作者
Heike Stöffler,Tatiana Zinkevich,Murat Yavuz,Anna‐Lena Hansen,Michael Knapp,Jozef Bednarčík,Simon Randau,Felix H. Richter,Jürgen Janek,Helmut Ehrenberg,Sylvio Indris
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (16): 10280-10290 被引量:80
标识
DOI:10.1021/acs.jpcc.9b01425
摘要

Glass–ceramic solid electrolytes have been reported to exhibit high ionic conductivities. Their synthesis can be performed by crystallization of mechanically milled Li2S–P2S5 glasses. Herein, the amorphization process of Li2S–P2S5 (75:25) induced by ball milling was analyzed via X-ray diffraction (XRD), Raman spectroscopy, and 31P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Several structural building blocks such as [P4S10], [P2S6]4–, [P2S7]4–, and [PS4]3– occur during this amorphization process. In addition, high-temperature XRD was used to study the crystallization process of the mechanically milled Li2S–P2S5 glass. Crystallization of phase-pure β-Li3PS4 was observed at temperatures up to 548 K. The kinetics of crystallization was analyzed by integration of the intensity of the Bragg reflections. 7Li NMR relaxometry and pulsed field-gradient (PFG) NMR were used to investigate the short-range and long-range Li+ dynamics in these amorphous and crystalline materials. From the diffusion coefficients obtained by PFG NMR, similar Li+ conductivities for the glassy and heat-treated samples were calculated. For the glassy sample and the glass–ceramic β-Li3PS4 (calcination at 523 K for 1 h), a Li+ bulk conductivity σLi of 1.6 × 10–4 S/cm (298 K) was obtained, showing that for this system a well-crystalline material is not essential to achieve fast Li-ion dynamics. Impedance measurements reveal a higher overall conductivity for the amorphous sample, suggesting that the influence of grain boundaries is small in this case.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王大力发布了新的文献求助10
2秒前
宁宁要去看文献了完成签到,获得积分10
2秒前
丘比特应助拾柒采纳,获得10
2秒前
2秒前
Awei发布了新的文献求助10
3秒前
小二郎应助wy采纳,获得10
3秒前
李爱国应助YY采纳,获得10
3秒前
星辰大海应助舒服的士萧采纳,获得10
3秒前
ning完成签到 ,获得积分10
3秒前
无花果应助花飞飞凡采纳,获得10
3秒前
久燊完成签到,获得积分20
4秒前
6秒前
tengfei完成签到,获得积分10
6秒前
6秒前
DDDD发布了新的文献求助10
8秒前
陆程文完成签到,获得积分10
8秒前
8秒前
霞俊杰完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
Awei完成签到,获得积分10
9秒前
天天快乐应助牛贝贝采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
BowieHuang应助Ymir采纳,获得40
11秒前
11秒前
NexusExplorer应助1101592875采纳,获得10
11秒前
付研琪发布了新的文献求助10
11秒前
花灯王子完成签到,获得积分10
12秒前
Lqian_Yu完成签到 ,获得积分10
12秒前
小葛发布了新的文献求助10
12秒前
Kevin发布了新的文献求助20
13秒前
lzx完成签到,获得积分10
13秒前
ZIS发布了新的文献求助10
13秒前
吴帅发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836