Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
等待诗柳发布了新的文献求助10
1秒前
JJJXG发布了新的文献求助20
4秒前
小二郎应助静心安逸采纳,获得10
5秒前
5秒前
Tree发布了新的文献求助10
5秒前
dgsxl发布了新的文献求助10
7秒前
念念完成签到 ,获得积分10
7秒前
10秒前
10秒前
桐桐应助啦啦采纳,获得10
10秒前
12秒前
JJJXG完成签到,获得积分10
12秒前
12秒前
淡然的寻冬完成签到 ,获得积分10
14秒前
苏志鹏发布了新的文献求助10
15秒前
听风发布了新的文献求助10
16秒前
谢佩奇发布了新的文献求助10
16秒前
斯文败类应助阔达秋翠采纳,获得10
16秒前
万能图书馆应助等待诗柳采纳,获得10
17秒前
xx发布了新的文献求助10
19秒前
19秒前
20秒前
苏志鹏完成签到,获得积分10
20秒前
快乐滑板应助Guo99采纳,获得10
20秒前
bubble完成签到,获得积分10
21秒前
星辰大海应助听风采纳,获得10
21秒前
甜甜玫瑰应助贝肯尼采纳,获得10
22秒前
23秒前
23秒前
老王完成签到,获得积分10
24秒前
Lee发布了新的文献求助10
25秒前
愉快的芒果给愉快的芒果的求助进行了留言
26秒前
yuanlai完成签到,获得积分10
27秒前
27秒前
LHX完成签到 ,获得积分10
27秒前
28秒前
zzz完成签到,获得积分10
29秒前
上官若男应助wawaa采纳,获得10
29秒前
29秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334372
求助须知:如何正确求助?哪些是违规求助? 2963568
关于积分的说明 8610576
捐赠科研通 2642546
什么是DOI,文献DOI怎么找? 1446799
科研通“疑难数据库(出版商)”最低求助积分说明 670402
邀请新用户注册赠送积分活动 658608