Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助盛世嫡妃采纳,获得10
刚刚
雷欧奥特曼完成签到,获得积分10
1秒前
Rrrowling发布了新的文献求助10
1秒前
香蕉觅云应助阿卷采纳,获得10
1秒前
2秒前
杨秋艳完成签到 ,获得积分10
2秒前
2秒前
乖乖猫发布了新的文献求助10
2秒前
2秒前
syy080837发布了新的文献求助10
3秒前
Accept完成签到,获得积分10
3秒前
在水一方应助自觉的涵易采纳,获得10
4秒前
田兆鹏完成签到,获得积分10
5秒前
cxt517完成签到,获得积分10
5秒前
NexusExplorer应助吐丝麵包采纳,获得10
5秒前
interest-li完成签到,获得积分10
5秒前
6秒前
moonpie发布了新的文献求助10
6秒前
科研通AI2S应助ky幻影采纳,获得10
6秒前
天天快乐应助虚幻豌豆采纳,获得10
6秒前
科学完成签到,获得积分20
7秒前
看看文献发布了新的文献求助10
7秒前
7秒前
8秒前
OhoOu完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
interest-li发布了新的文献求助30
8秒前
roy_chiang完成签到,获得积分0
8秒前
haozai完成签到,获得积分10
8秒前
lj发布了新的文献求助10
9秒前
英姑应助Jasen采纳,获得10
9秒前
10秒前
10秒前
wangsai0532完成签到,获得积分10
10秒前
11秒前
东方三问完成签到,获得积分10
11秒前
18707979012完成签到,获得积分20
11秒前
11秒前
思源应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482