Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maxw完成签到,获得积分10
刚刚
芝麻完成签到,获得积分10
1秒前
恋风阁完成签到 ,获得积分10
1秒前
桑尼号完成签到,获得积分10
2秒前
文静人达完成签到 ,获得积分10
3秒前
miao完成签到,获得积分10
4秒前
左右完成签到 ,获得积分10
5秒前
lee完成签到 ,获得积分10
6秒前
小医发布了新的文献求助10
7秒前
余淮完成签到,获得积分10
7秒前
子卿完成签到,获得积分10
7秒前
活力的曲奇完成签到 ,获得积分10
8秒前
8秒前
冰冰完成签到,获得积分10
9秒前
刘一完成签到 ,获得积分10
9秒前
哈哈哈完成签到 ,获得积分10
10秒前
11秒前
Maxw发布了新的文献求助10
11秒前
cc完成签到,获得积分10
11秒前
WangDeLi完成签到 ,获得积分10
12秒前
快乐修勾完成签到 ,获得积分10
12秒前
Depeng完成签到,获得积分10
12秒前
13秒前
小二郎应助Bin_Liu采纳,获得10
16秒前
茶多酚完成签到,获得积分10
16秒前
饼饼完成签到,获得积分10
17秒前
squeak完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
卟啉光环完成签到,获得积分10
18秒前
19秒前
adovj完成签到 ,获得积分10
19秒前
帅气善斓应助杜祖盛采纳,获得10
21秒前
卟啉光环发布了新的文献求助10
21秒前
hanshishengye完成签到 ,获得积分10
21秒前
22秒前
23秒前
慕青应助倾听采纳,获得10
25秒前
Waris完成签到 ,获得积分10
25秒前
那会是永远完成签到,获得积分10
26秒前
Silole完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603571
求助须知:如何正确求助?哪些是违规求助? 4688556
关于积分的说明 14854576
捐赠科研通 4693743
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507086
关于科研通互助平台的介绍 1471806