Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QLLW应助自由逐风采纳,获得10
刚刚
小马甲应助liuyang采纳,获得10
1秒前
1秒前
桃小昔完成签到,获得积分10
2秒前
张美美完成签到,获得积分10
2秒前
LH发布了新的文献求助10
3秒前
大白应助cqwswfl采纳,获得20
3秒前
万能图书馆应助王超采纳,获得10
3秒前
英姑应助雪白的西牛采纳,获得10
4秒前
zoe完成签到 ,获得积分10
4秒前
ROYXIONG完成签到 ,获得积分10
5秒前
今后应助健康的人生采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
5秒前
5秒前
无极微光应助等待安柏采纳,获得20
5秒前
6秒前
6秒前
高挑的冰露完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助ExtroGod采纳,获得10
6秒前
doctor_loong完成签到,获得积分10
6秒前
幸福鞯发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
四夕水窖发布了新的文献求助10
8秒前
小马甲应助桃小昔采纳,获得10
9秒前
凌兰完成签到 ,获得积分10
9秒前
黄青青完成签到,获得积分10
9秒前
若溪完成签到,获得积分10
9秒前
善良曼寒发布了新的文献求助10
10秒前
doctor_loong发布了新的文献求助10
10秒前
彭于晏应助huhuhuhuhu采纳,获得10
10秒前
共享精神应助zzj-zjut采纳,获得10
10秒前
子訡完成签到 ,获得积分10
11秒前
11秒前
123321发布了新的文献求助10
11秒前
科研通AI6应助ma采纳,获得10
11秒前
谨慎发布了新的文献求助10
12秒前
科研通AI6应助无奈母鸡采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661