Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
可靠的西牛关注了科研通微信公众号
1秒前
万能图书馆应助sss采纳,获得10
1秒前
张英歌发布了新的文献求助10
2秒前
算命先生完成签到,获得积分10
2秒前
可爱的函函应助王女士采纳,获得10
2秒前
nannan发布了新的文献求助10
2秒前
2秒前
Ellen完成签到,获得积分10
3秒前
善学以致用应助fun采纳,获得10
3秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
3秒前
Hello应助夏安采纳,获得10
3秒前
yeoyoo驳回了mono应助
3秒前
123完成签到,获得积分20
3秒前
4秒前
张肥肥发布了新的文献求助10
4秒前
4秒前
cuicy发布了新的文献求助10
4秒前
4秒前
领导范儿应助脱贫攻坚采纳,获得10
5秒前
科研通AI6应助钱钱采纳,获得10
5秒前
端庄沉鱼发布了新的文献求助10
5秒前
Hello应助电池博士采纳,获得10
5秒前
科研通AI6应助风中泰坦采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
水何澹澹完成签到,获得积分0
6秒前
6秒前
6秒前
7秒前
7秒前
杯莫停完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
独孤刘完成签到,获得积分10
8秒前
动听健柏发布了新的文献求助10
9秒前
9秒前
DrSong发布了新的文献求助30
9秒前
Jasper应助123采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853