Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses

鉴定(生物学) 骨肉瘤 钥匙(锁) 生物 基因 计算生物学 生物信息学 遗传学 癌症研究 生态学
作者
Guangbing Hu,Zhi-an Cheng,Zizhuo Wu,Hanyu Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (8): 13554-13561 被引量:9
标识
DOI:10.1002/jcb.28630
摘要

Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ortho Wang发布了新的文献求助10
1秒前
qwt发布了新的文献求助10
1秒前
YoLo发布了新的文献求助10
2秒前
格林发布了新的文献求助10
2秒前
2秒前
子车半烟发布了新的文献求助10
2秒前
3秒前
yyj发布了新的文献求助10
3秒前
3秒前
ctttt发布了新的文献求助10
3秒前
漠雨寒灯发布了新的文献求助10
3秒前
木苏完成签到,获得积分10
4秒前
椰壳发布了新的文献求助10
4秒前
火离猫发布了新的文献求助10
4秒前
4秒前
4秒前
陈琛发布了新的文献求助10
4秒前
楼藏鸟完成签到,获得积分0
5秒前
搞怪听枫关注了科研通微信公众号
5秒前
GGbond发布了新的文献求助10
5秒前
5秒前
糊涂的星月完成签到 ,获得积分10
5秒前
卷aaaa发布了新的文献求助10
6秒前
6秒前
6秒前
dd给dd的求助进行了留言
7秒前
雪七发布了新的文献求助10
7秒前
仁清完成签到,获得积分10
7秒前
SciGPT应助TT采纳,获得10
7秒前
7秒前
张佳浩发布了新的文献求助10
7秒前
喜悦香薇完成签到 ,获得积分10
8秒前
宁宁发布了新的文献求助10
8秒前
FashionBoy应助孙树人采纳,获得10
8秒前
安静无招发布了新的文献求助10
8秒前
尹恩惠完成签到,获得积分10
8秒前
翟国庆完成签到,获得积分10
9秒前
852应助123采纳,获得10
9秒前
田様应助淡然的水蓝采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132