可达性
数学
自动机
国家(计算机科学)
平衡点
集合(抽象数据类型)
基质(化学分析)
理论(学习稳定性)
不变(物理)
点(几何)
控制理论(社会学)
应用数学
数学优化
计算机科学
算法
控制(管理)
理论计算机科学
机器学习
数学分析
微分方程
人工智能
复合材料
数学物理
几何学
材料科学
程序设计语言
作者
Xiaoguang Han,Zengqiang Chen
标识
DOI:10.1016/j.jfranklin.2018.09.009
摘要
In this paper, we develop a matrix-based methodology to investigate the problems of stability and stabilizability for a deterministic finite automaton (DFA) in the framework of the semi-tensor product (STP) of matrices. First, we discuss the equilibrium point stability (resp., set stability) of a DFA, i.e., verifying whether or not all state trajectories starting from a subset of states converge to a specified equilibrium point (resp., subset of states). The necessary and sufficient conditions for verifying both stabilities are given, respectively. Second, equilibrium point stabilizability (resp., set stabilizability) of a DFA is investigated as verifying the issue of whether or not a DFA can be globally or locally stabilized to a specified equilibrium point (resp., subset of states) by a permissible state-feedback controller. Based on the pre-reachability set and invariant-subset defined in this paper, the matrix-based criteria for verifying equilibrium point stabilizability and set stabilizability are derived, respectively. Furthermore, for each type of stabilizability, all permissible state-feedback controllers for the case of minimal length state trajectories, called optimal state-feedback controllers, are characterized by using the proposed polynomial algorithms. Finally, two examples are presented to illustrate the effectiveness of the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI