Deep Multi-Scale Convolutional LSTM Network for Travel Demand and Origin-Destination Predictions

计算机科学 深度学习 人工智能 大数据 流量网络 服务(商务) 比例(比率) 智能交通系统 数据建模 分割 数据挖掘 机器学习 地理 数据库 数学优化 运输工程 工程类 数学 地图学 经济 经济
作者
Kai-Fung Chu,Albert Y. S. Lam,Victor O. K. Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:21 (8): 3219-3232 被引量:128
标识
DOI:10.1109/tits.2019.2924971
摘要

Advancements in sensing and the Internet of Things (IoT) technologies generate a huge amount of data. Mobility on demand (MoD) service benefits from the availability of big data in the intelligent transportation system. Given the future travel demand or origin-destination (OD) flows prediction, service providers can pre-allocate unoccupied vehicles to the customers' origins of service to reduce waiting time. Traditional approaches on future travel demand and the OD flows predictions rely on statistical or machine learning methods. Inspired by deep learning techniques for image and video processing, through regarding localized travel demands as image pixels, a novel deep learning model called multi-scale convolutional long short-term memory network (MultiConvLSTM) is developed in this paper. Rather than using the traditional OD matrix which may lead to loss of geographical information, we propose a new data structure, called OD tensor to represent OD flows, and a manipulation method, called OD tensor permutation and matricization, is introduced to handle the high dimensionality features of OD tensor. MultiConvLSTM considers both temporal and spatial correlations to predict the future travel demand and OD flows. Experiments on real-world New York taxi data of around 400 million records are performed. Our results show that the MultiConvLSTM achieves the highest accuracy in both one-step and multiple-step predictions and it outperforms the existing methods for travel demand and OD flow predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呵呵呵呵应助自然1111采纳,获得10
1秒前
1秒前
何以解忧完成签到,获得积分10
1秒前
LSxtd完成签到,获得积分20
2秒前
结实三颜完成签到,获得积分10
2秒前
乔乔发布了新的文献求助10
2秒前
领导范儿应助帕尼灬尼采纳,获得10
2秒前
瞌睡社畜发布了新的文献求助10
2秒前
3秒前
SYLH应助虎子采纳,获得10
4秒前
爆米花应助yuanhao采纳,获得10
5秒前
5秒前
斯文幻儿发布了新的文献求助10
5秒前
6秒前
终澈完成签到,获得积分10
6秒前
Junping发布了新的文献求助10
6秒前
橘生淮南发布了新的文献求助10
7秒前
7秒前
8秒前
清宁亦无拘完成签到 ,获得积分10
8秒前
张行发布了新的文献求助10
8秒前
852应助踏雪无痕采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
WO完成签到,获得积分20
11秒前
李健的小迷弟应助Dr.coco采纳,获得10
12秒前
wnx001111发布了新的文献求助10
12秒前
脑洞疼应助nqyKOj采纳,获得20
12秒前
隐形曼青应助千秋入画采纳,获得10
12秒前
稳重诗珊完成签到,获得积分10
12秒前
12秒前
星辰大海应助哈士轩采纳,获得10
12秒前
st完成签到,获得积分10
12秒前
13秒前
jianlong0206完成签到,获得积分10
13秒前
wanci应助xxx采纳,获得10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635