Off-line Data-driven Multi-objective Optimization: Knowledge Transfer between Surrogates and Generation of Final Solutions

计算机科学 集合(抽象数据类型) 多目标优化 帕累托原理 机器学习 人工智能 算法 数学优化 进化算法 水准点(测量) 最优化问题 数据挖掘 过程(计算) 数学 大地测量学 程序设计语言 地理 操作系统
作者
Cuie Yang,Jinliang Ding,Yaochu Jin,Tianyou Chai
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:54
标识
DOI:10.1109/tevc.2019.2925959
摘要

In offline data-driven optimization, only historical data is available for optimization, making it impossible to validate the obtained solutions during the optimization. To address these difficulties, this paper proposes an evolutionary algorithm assisted by two surrogates, one coarse model and one fine model. The coarse surrogate (CS) aims to guide the algorithm to quickly find a promising subregion in the search space, whereas the fine one focuses on leveraging good solutions according to the knowledge transferred from the CS. Since the obtained Pareto optimal solutions have not been validated using the real fitness function, a technique for generating the final optimal solutions is suggested. All achieved solutions during the whole optimization process are grouped into a number of clusters according to a set of reference vectors. Then, the solutions in each cluster are averaged and outputted as the final solution of that cluster. The proposed algorithm is compared with its three variants and two state-of-the-art offline data-driven multiobjective algorithms on eight benchmark problems to demonstrate its effectiveness. Finally, the proposed algorithm is successfully applied to an operational indices optimization problem in beneficiation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助外婆的新世界采纳,获得10
刚刚
超越radiology完成签到,获得积分10
刚刚
曾经的风华完成签到,获得积分10
1秒前
yuqinghui98发布了新的文献求助10
2秒前
2秒前
2秒前
不晚完成签到,获得积分20
4秒前
完美世界应助111采纳,获得10
4秒前
小次之山发布了新的文献求助20
4秒前
6秒前
木子李完成签到,获得积分20
8秒前
彩色曼彤发布了新的文献求助10
11秒前
罗实完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
14秒前
15秒前
15秒前
桐桐应助热心小松鼠采纳,获得10
15秒前
充电宝应助热心小松鼠采纳,获得10
15秒前
所所应助热心小松鼠采纳,获得10
15秒前
Akim应助热心小松鼠采纳,获得10
15秒前
我是老大应助热心小松鼠采纳,获得10
15秒前
领导范儿应助热心小松鼠采纳,获得10
16秒前
岑寄灵完成签到,获得积分20
16秒前
田様应助热心小松鼠采纳,获得10
16秒前
所所应助热心小松鼠采纳,获得10
16秒前
英俊的铭应助热心小松鼠采纳,获得10
16秒前
曼凡发布了新的文献求助10
16秒前
Owen应助一朵采纳,获得10
16秒前
16秒前
17秒前
搜集达人应助呆萌幻竹采纳,获得10
17秒前
星辰大海应助冷酷的树叶采纳,获得10
17秒前
深情安青应助高中生采纳,获得10
17秒前
jason完成签到,获得积分10
17秒前
19秒前
刻苦惜霜完成签到,获得积分10
19秒前
jason发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421