Vehicle Driving Behavior Recognition Based on Multi-View Convolutional Neural Network With Joint Data Augmentation

过度拟合 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 人工神经网络 机器学习
作者
Yong Zhang,Junjie Li,Yaohua Guo,Chao‐Nan Xu,Jie Bao,Yunpeng Song
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 4223-4234 被引量:46
标识
DOI:10.1109/tvt.2019.2903110
摘要

This paper proposes a method for vehicle driving behavior recognition based on a six-axis motion processor. This method uses deep-learning technology to learn the sample data collected by the on-board sensor. To solve the problem of small sample size and easy overfitting, we propose a joint data augmentation (JDA) scheme, and design a new multi-view convolutional neural network model (MV-CNN). The JDA includes the multi-axis weighted fusion algorithm, background noise fusion algorithm, and random cropping algorithm to construct a sample dataset that is more in line with a complex real driving environment. With the CNN model, the direction of information propagation improved, and a new MV-CNN model was developed for the training, learning, and recognition of driving behavior. The performance of MV-CNN is experimentally compared with CNN, recurrent neural networks (RNN), LSTM, CNN+LSTM, and three-dimensional CNN. The results show that MV-CNN can obtain the best recall, precision, and F1-score. At the same time, MV-CNN and JDA have better generalization ability, reduce the training variance and deviation, and increase the stability of the model training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
nous完成签到,获得积分10
2秒前
11完成签到,获得积分10
3秒前
西西完成签到,获得积分10
3秒前
3秒前
Wang_ZiMo发布了新的文献求助10
4秒前
海绵宝宝的做饭铲完成签到,获得积分10
4秒前
4秒前
yuuka发布了新的文献求助10
5秒前
Wang驳回了李健应助
5秒前
微笑笑卉发布了新的文献求助10
6秒前
科研通AI6应助狂野大雄鹰采纳,获得10
8秒前
zwangxia完成签到,获得积分10
9秒前
10秒前
Xuz完成签到 ,获得积分10
11秒前
谢123完成签到 ,获得积分10
11秒前
11秒前
hahage完成签到,获得积分10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
tcf应助科研通管家采纳,获得10
13秒前
源源完成签到 ,获得积分10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
natmed应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
无花果应助paz_1010采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188