Vehicle Driving Behavior Recognition Based on Multi-View Convolutional Neural Network With Joint Data Augmentation

过度拟合 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 人工神经网络 机器学习
作者
Yong Zhang,Junjie Li,Yaohua Guo,Chao‐Nan Xu,Jie Bao,Yunpeng Song
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 4223-4234 被引量:46
标识
DOI:10.1109/tvt.2019.2903110
摘要

This paper proposes a method for vehicle driving behavior recognition based on a six-axis motion processor. This method uses deep-learning technology to learn the sample data collected by the on-board sensor. To solve the problem of small sample size and easy overfitting, we propose a joint data augmentation (JDA) scheme, and design a new multi-view convolutional neural network model (MV-CNN). The JDA includes the multi-axis weighted fusion algorithm, background noise fusion algorithm, and random cropping algorithm to construct a sample dataset that is more in line with a complex real driving environment. With the CNN model, the direction of information propagation improved, and a new MV-CNN model was developed for the training, learning, and recognition of driving behavior. The performance of MV-CNN is experimentally compared with CNN, recurrent neural networks (RNN), LSTM, CNN+LSTM, and three-dimensional CNN. The results show that MV-CNN can obtain the best recall, precision, and F1-score. At the same time, MV-CNN and JDA have better generalization ability, reduce the training variance and deviation, and increase the stability of the model training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Bin_Lau完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
夏夏发布了新的文献求助10
5秒前
5秒前
火星人发布了新的文献求助10
7秒前
7秒前
cindy发布了新的文献求助10
8秒前
yysghr发布了新的文献求助10
9秒前
Chelry完成签到,获得积分10
10秒前
Jmting发布了新的文献求助10
10秒前
Sou完成签到 ,获得积分20
10秒前
11秒前
酷波er应助夏夏采纳,获得10
14秒前
liuxingcen应助Chelry采纳,获得10
15秒前
烧炭匠完成签到,获得积分10
16秒前
17秒前
大鲨鱼完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
728完成签到,获得积分10
20秒前
qijia完成签到,获得积分10
21秒前
21秒前
ED应助zhi采纳,获得10
21秒前
23秒前
酷酷的冰真应助quzhenzxxx采纳,获得10
29秒前
jia完成签到 ,获得积分10
30秒前
无情打工人完成签到,获得积分10
30秒前
鳗鱼焦完成签到 ,获得积分10
31秒前
安在哉发布了新的文献求助20
31秒前
35秒前
奋斗的画笔关注了科研通微信公众号
38秒前
小羡完成签到 ,获得积分10
44秒前
44秒前
卢莹完成签到,获得积分10
46秒前
46秒前
fanglin123完成签到,获得积分10
50秒前
安在哉完成签到,获得积分10
52秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150