持续发光
发光
荧光粉
热释光
激发态
光致发光
激发
分析化学(期刊)
化学
材料科学
光电子学
原子物理学
物理
色谱法
量子力学
作者
Xiaolang Liu,Zhen Song,Shuxin Wang,Quanlin Liu
标识
DOI:10.1016/j.jlumin.2018.12.069
摘要
(Sr,Ca)AlSiN3:Eu2+ phosphors have been widely used in phosphor-converted white light emitting diodes. Herein, we reported the strong red persistent luminescence in (Sr,Ca)AlSiN3:Eu2+ under UV light excitation. The Sr0.8Ca0.2AlSiN3:0.15% Eu2+ shows the strongest red persistent luminescence with a peak emission wavelength at ~628 nm and a persistent time of ~9600 s at the 0.32 mcd/m2 threshold value. A new persistent luminescence mechanism, which is different to that of SrAl2O4:Eu2+,Dy3+, was proposed by comparing the thermoluminescence excitation spectrum (TLES) and the photoluminescence excitation spectrum (PLES) of Sr0.8Ca0.2AlSiN3:0.15% Eu2+. The electrons are directly excited from 4f ground states to the conduction band or from valence band to conduction band in (Sr,Ca)AlSiN3:Eu2+; while, in SrAl2O4:Eu2+,Dy3+, they are first excited to 5d level and then stimulated thermal process to the conduction band. The effect of Eu2+ concentration on red persistent luminescence in (Sr,Ca)AlSiN3:Eu2+ were discussed. The proposed mechanism of persistent luminescence can help us to design and find new persistent luminescence materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI