Learning deconvolutional deep neural network for high resolution medical image reconstruction

反褶积 计算机科学 人工智能 深度学习 人工神经网络 图像(数学) 图像分辨率 迭代重建 参数统计 相似性(几何) 计算机视觉 算法 模式识别(心理学) 数学 统计
作者
Hui Liu,Jun Xu,Yan Wu,Qiang Guo,Bulat Ibragimov,Lei Xing
出处
期刊:Information Sciences [Elsevier]
卷期号:468: 142-154 被引量:71
标识
DOI:10.1016/j.ins.2018.08.022
摘要

Super resolution reconstruction can be used to recover a high resolution image from a low resolution image and is particularly beneficial for clinically significant medical images in diagnosis, treatment, and research applications. However, super resolution is a challenging inverse problem due to its ill-posed nature. In this paper, inspired by recent developments in deep learning, a super resolution algorithm (SR-DCNN) is proposed for medical images that is based on a neural network and employs a deconvolution operation. The purpose of the deconvolution is to effectively establish an end-to-end mapping between the low and high resolution images. First, training data consisting of 1500 medical images of the lung, brain, heart, and spine, was collected, down-sampled, and input into the neural network. Then, patch-based image features were extracted using a set of filters and the parametric rectified linear unit (PReLU) was subsequently applied as the activation function. Finally, these extracted image features were used to reconstruct high resolution images by minimizing the loss between the predicted output image and the original high resolution image. Various network structures and hyper parameter settings were explored to achieve a good trade-off between performance and computational efficiency, based on which a four-layer network was found to achieve the best result in terms of the peak signal-to-noise ratio (PSNR), structural similarity measure (SSIM), information entropy (IE), and execution speed. The network was then validated on test data, and it was demonstrated that the proposed SR-DCNN algorithm quantitatively and qualitatively outperformed the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjj发布了新的文献求助10
刚刚
刚刚
小晋完成签到,获得积分10
1秒前
2秒前
YDB应助lbl采纳,获得10
2秒前
3秒前
含蓄清炎发布了新的文献求助10
3秒前
XU发布了新的文献求助10
4秒前
whitekitten发布了新的文献求助10
5秒前
5秒前
Laus完成签到,获得积分20
6秒前
wk0635完成签到,获得积分10
6秒前
A1234567发布了新的文献求助10
6秒前
zjj完成签到,获得积分20
8秒前
耍酷含芙发布了新的文献求助10
9秒前
zuiai完成签到,获得积分10
10秒前
jia0发布了新的文献求助10
11秒前
whitekitten完成签到,获得积分10
11秒前
13秒前
LYchem完成签到,获得积分10
15秒前
繁荣的秋发布了新的文献求助10
16秒前
清禾kat完成签到,获得积分10
17秒前
17秒前
和谐谷蕊完成签到,获得积分10
17秒前
科研通AI5应助含蓄朋友采纳,获得10
18秒前
Dani完成签到,获得积分20
19秒前
20秒前
帅气白云发布了新的文献求助10
21秒前
FashionBoy应助123采纳,获得10
21秒前
沙海冬完成签到,获得积分10
21秒前
22秒前
爆米花应助dawnn采纳,获得10
22秒前
chinning发布了新的文献求助10
24秒前
小林太郎应助热心的代桃采纳,获得20
25秒前
朵拉发布了新的文献求助10
25秒前
jia0完成签到,获得积分10
26秒前
L.L发布了新的文献求助10
26秒前
27秒前
27秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978