亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

miRNA‐210: a hypoxamiRyad of possibilities

螺旋动脉 胎儿 胎盘 宫内生长受限 缺氧(环境) 内科学 医学 怀孕 胚胎血管重塑 内分泌学 胎盘功能不全 子宫动脉 生物 妊娠期 化学 遗传学 有机化学 氧气
作者
Tereza Cindrová‐Davies,Dino A. Giussani
出处
期刊:The Journal of Physiology [Wiley]
卷期号:596 (23): 5501-5502 被引量:2
标识
DOI:10.1113/jp276591
摘要

During early pregnancy, the uterine vasculature undergoes major adaptive responses to facilitate unimpeded blood flow to the placenta and thus promote the growth of the fetus. The physiological conversion of human uterine spiral arteries is associated with loss of elastic tissue and smooth muscle from the vessel wall, leading to funnel-shape dilatation, which ensures reduced vascular resistance and appropriate blood supply to the fetus (Burton et al. 2009). The conversion of spiral arteries is deficient in pathological diseases of pregnancy, such as in early onset pre-eclampsia and intrauterine growth restriction (IUGR). Under these circumstances, there is abnormal placental development, leading to retention of spiral artery reactivity, impaired placental blood flow with ischaemia and reperfusion, usually manifested as abnormal spiral and uterine artery Doppler indices, (Redman & Sargent, 2005; Burton et al. 2009). The mal-perfused placenta can trigger the secretion of a mixture of placental factors, including anti-angiogenic agents, pro-inflammatory cytokines and apoptotic debris, that culminates in an enhanced maternal inflammatory response, which in turn can induce systemic endothelial dysfunction and the maternal syndrome of pre-eclampsia (Cindrova-Davies, 2014). Placental oxidative stress leads to the regression of placental fetal capillaries and atherosis, remodelling and increased wall thickness of stem villous arteries, thereby impairing placental transfer, which promotes chronic fetal hypoxia and IUGR (Lu et al. 2017). There are over 140 million people living at high altitude, comprising the largest single group at risk of fetal growth restriction. Pregnancy at high altitude represents an experiment of nature characterised by the exposure of the fetoplacental unit to chronic hypobaric hypoxia. It is established that high altitude pregnancy reduces human birth weight (∼100 g per 1000 m of ascent), with an increased prevalence of IUGR (Soria et al. 2013) and pre-eclampsia (Keyes et al. 2003). However, the mechanisms involved are not fully understood, thereby preventing targets for human clinical intervention. Chronic hypoxia is considered a key mediator of the pathophysiology of IUGR in fetal development at high altitude. This is supported by evidence of a 40% reduction in the fetal growth in development at 3600 m above sea level ( reduced ∼30%) and reversal of the high altitude-induced fetal growth restriction with oxygen supplementation in a chicken embryo model (Giussani et al. 2007). The chronic hypoxia of human pregnancy at high altitude can also affect the maternal adaptation to pregnancy, for example by impairing the increase in uterine artery blood flow with advancing gestation in human pregnancy (Julian et al. 2009). However, despite this and the lowering of ambient arterial partial pressure of oxygen, normal oxygen delivery to the fetus appears to be maintained at high altitude. The latter may partly be due to increased erythropoiesis in both the maternal and fetal circulations, and partly due to modifications at the level of the placenta (Postigo et al. 2009). It has been proposed that the placenta at high altitude undergoes metabolic remodelling, which spares oxygen delivery to the fetus at the expense of increased placental glucose consumption (Illsley et al. 2010). Indeed, exposure to chronic hypobaric hypoxia causes mild placental endoplasmic reticulum stress, which modulates protein synthesis and slows proliferation, thereby contributing to reduced placental volume and low birth weight (Yung et al. 2012). In addition, protein synthesis inhibition also suppresses mitochondrial electron transport chain function in hypoxic placentas, which is likely mediated by upregulation of microRNA-210 (miR-210) in high altitude placentas (Colleoni et al. 2013). An increased vascular resistance and consequent reduction in blood flow in the uteroplacental circulation thus seems to be the leading cause of IUGR in high altitude pregnancies. Similarly, increased uterine vascular resistance due to deficient spiral artery conversion is a known underlying factor in sea level pregnancies complicated by both IUGR and early onset pre-eclampsia. In this issue of The Journal of Physiology, Hu and colleagues (2018) discover deeper novel molecular mechanisms promoting the increased vascular resistance of uterine arteries in an ovine model of high altitude pregnancy. The authors elegantly demonstrate a causal role for miR-210 in downregulating ten–eleven translocation methylcytosine dioxygenase 1 (TET1) in uterine arteries of pregnant sheep at high altitude, and they mechanistically link this cross-talk to the large conductance Ca2+-activated K+ (BKCa) channel dysfunction in uterine arteries under chronic hypoxia. Hu and colleagues also show that blocking miR-210 ameliorates the hypoxia-induced reduction in TET1 and the consequent suppression of BKCa channel B1 subunit function, thereby restoring appropriate uterine blood flow. Therefore, this cutting-edge study identifies miR-210 as a potential therapeutic target that could protect utero-placental perfusion and fetal growth in a myriad of pathological pregnancy conditions associated with increased uterine vascular resistance, such as in pregnancy at high altitude or in sea level pregnancies complicated by IUGR or pre-eclampsia. None declared. Both authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiwei应助nnc采纳,获得50
26秒前
nnc完成签到,获得积分10
38秒前
39秒前
科研通AI2S应助wuran采纳,获得10
48秒前
顾矜应助科研通管家采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得10
53秒前
NexusExplorer应助科研通管家采纳,获得10
53秒前
嘻嘻完成签到,获得积分10
1分钟前
Orange应助3927456843采纳,获得10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
2分钟前
小蘑菇应助LeezZZZ采纳,获得10
2分钟前
3927456843发布了新的文献求助10
2分钟前
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
3927456843完成签到,获得积分10
2分钟前
Lucas应助梦想家采纳,获得10
3分钟前
科研通AI6应助LeezZZZ采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
梦想家发布了新的文献求助10
3分钟前
熊啊发布了新的文献求助10
4分钟前
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
小周完成签到 ,获得积分10
4分钟前
5分钟前
梦想家完成签到,获得积分10
6分钟前
6分钟前
story发布了新的文献求助10
6分钟前
科研通AI2S应助story采纳,获得10
6分钟前
6分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
熊啊发布了新的文献求助10
6分钟前
Kevin完成签到,获得积分10
7分钟前
sci2025opt完成签到 ,获得积分10
7分钟前
8分钟前
李健应助鸡蛋黄采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877