Bone Region Segmentation in Medical Images Based on Improved Watershed Algorithm

人工智能 图像分割 分割 计算机科学 像素 范围分割 区域增长 分水岭 直方图 模式识别(心理学) 计算机视觉 灰度 聚类分析 基于分割的对象分类 尺度空间分割 相似性(几何) 图像(数学)
作者
Zhou Jun,Mei Yang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-8 被引量:8
标识
DOI:10.1155/2022/3975853
摘要

Watershed algorithm is widely used in image segmentation, but it has oversegmentation in image segmentation. Therefore, an image segmentation algorithm based on K-means and improved watershed algorithm is proposed. Firstly, Gaussian filter is used to denoise human skeleton image. K-means clustering algorithm is used to segment the denoised image and the connected component with the largest area is extracted as the initial human skeleton region. The initial bone region was morphologically opened and then morphologically closed to eliminate the noise. Morphologically open operation is used to disconnect other human tissues that adhere to the human bone region and eliminate the background noise with small area, while closed operation smoothes the edge of the human bone region and fills the fracture in the contour line. Secondly, the watershed segmentation algorithm is implemented on the image after morphological operation. The similarity degree of two blocks is defined according to the mean difference of gray level of adjacent blocks and the mean value of standard deviation of gray level of pixels in the edge of the block 4-neighborhood. The adaptive threshold T is generated by Otsu method for histogram of gradient amplitude image. If the similarity degree is greater than T, the image blocks will be merged; otherwise, the image blocks will not be merged. The proposed image segmentation algorithm is used to extract and segment the human bone region from 100 medical images containing human bone. The number of blocks segmented by watershed algorithm is 2775 to 3357, but the number of blocks segmented by the proposed algorithm is 221 to 559. The experimental results show that the proposed algorithm effectively solves the oversegmentation problem of watershed algorithm and effectively segments the image target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
白白SAMA123完成签到,获得积分10
1秒前
1秒前
大个应助汪爷爷采纳,获得10
2秒前
谷飞飞完成签到,获得积分10
3秒前
4秒前
liu完成签到,获得积分10
4秒前
5秒前
zzz完成签到,获得积分10
6秒前
咸鱼之王完成签到,获得积分10
6秒前
Yuee完成签到,获得积分10
6秒前
咿咿完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
6秒前
亭瞳完成签到,获得积分10
7秒前
7秒前
会发光的星星完成签到,获得积分10
7秒前
7秒前
cyj完成签到 ,获得积分10
7秒前
zhabgyyy完成签到,获得积分10
7秒前
Khalil完成签到 ,获得积分10
8秒前
谦让小蚂蚁完成签到,获得积分10
8秒前
10秒前
思源应助min20210429采纳,获得10
10秒前
陈宇蛟完成签到,获得积分10
11秒前
12秒前
hkh完成签到,获得积分10
12秒前
悦耳的天宇完成签到,获得积分20
12秒前
Crisp完成签到,获得积分10
13秒前
Lucas应助谦让小蚂蚁采纳,获得10
13秒前
凉笙墨染发布了新的文献求助10
13秒前
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
maox1aoxin应助科研通管家采纳,获得30
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
DijiaXu应助科研通管家采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044