Bone Region Segmentation in Medical Images Based on Improved Watershed Algorithm

人工智能 图像分割 分割 计算机科学 像素 范围分割 区域增长 分水岭 直方图 模式识别(心理学) 计算机视觉 灰度 聚类分析 基于分割的对象分类 尺度空间分割 相似性(几何) 图像(数学)
作者
Zhou Jun,Mei Yang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-8 被引量:8
标识
DOI:10.1155/2022/3975853
摘要

Watershed algorithm is widely used in image segmentation, but it has oversegmentation in image segmentation. Therefore, an image segmentation algorithm based on K-means and improved watershed algorithm is proposed. Firstly, Gaussian filter is used to denoise human skeleton image. K-means clustering algorithm is used to segment the denoised image and the connected component with the largest area is extracted as the initial human skeleton region. The initial bone region was morphologically opened and then morphologically closed to eliminate the noise. Morphologically open operation is used to disconnect other human tissues that adhere to the human bone region and eliminate the background noise with small area, while closed operation smoothes the edge of the human bone region and fills the fracture in the contour line. Secondly, the watershed segmentation algorithm is implemented on the image after morphological operation. The similarity degree of two blocks is defined according to the mean difference of gray level of adjacent blocks and the mean value of standard deviation of gray level of pixels in the edge of the block 4-neighborhood. The adaptive threshold T is generated by Otsu method for histogram of gradient amplitude image. If the similarity degree is greater than T, the image blocks will be merged; otherwise, the image blocks will not be merged. The proposed image segmentation algorithm is used to extract and segment the human bone region from 100 medical images containing human bone. The number of blocks segmented by watershed algorithm is 2775 to 3357, but the number of blocks segmented by the proposed algorithm is 221 to 559. The experimental results show that the proposed algorithm effectively solves the oversegmentation problem of watershed algorithm and effectively segments the image target.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
忐忑的涛发布了新的文献求助10
刚刚
叶子宁发布了新的文献求助10
1秒前
djdsg完成签到,获得积分10
1秒前
xinxin发布了新的文献求助10
2秒前
2秒前
科研通AI6应助尘间雪采纳,获得10
2秒前
桐桐应助snowy_owl采纳,获得30
3秒前
3秒前
4秒前
4秒前
weifeng完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
djdsg发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
研友_LNMmW8发布了新的文献求助10
8秒前
9秒前
cym完成签到,获得积分10
9秒前
10秒前
10秒前
penguin发布了新的文献求助10
10秒前
阿碧发布了新的文献求助10
11秒前
weifeng发布了新的文献求助10
12秒前
终梦应助xinxin采纳,获得10
12秒前
derrrrrsin发布了新的文献求助10
12秒前
12秒前
12秒前
chem_jwy发布了新的文献求助10
13秒前
皮凡发布了新的文献求助10
13秒前
Souveb完成签到,获得积分10
14秒前
15秒前
栗悟饭发布了新的文献求助10
16秒前
随机发布了新的文献求助10
17秒前
18秒前
ding应助笑点低飞扬采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521661
求助须知:如何正确求助?哪些是违规求助? 4612952
关于积分的说明 14536550
捐赠科研通 4550467
什么是DOI,文献DOI怎么找? 2493708
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446243