Multi-emission fluorescent sensor array based on carbon dots and lanthanide for detection of heavy metal ions under stepwise prediction strategy

镧系元素 荧光 瓶颈 水溶液中的金属离子 离子 金属 管道(软件) 计算机科学 材料科学 生物系统 环境科学 化学 冶金 物理 光学 有机化学 嵌入式系统 程序设计语言 生物
作者
Zijun Xu,Jiao Chen,Yuying Liu,Xiyuan Wang,Qingdong Shi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:441: 135690-135690 被引量:53
标识
DOI:10.1016/j.cej.2022.135690
摘要

Pollution by heavy metals represents a serious threat to both the environment and human health. A facile multi-emission fluorescence sensor array based on carbon dots (QR-CDs) and a novel lanthanide complex (EDTA-Tb3+) was constructed, and is capable of obtaining simultaneous, multidimensional data, which can improve the detection efficiency and accuracy when it comes to multiple heavy metal ions. To meet the challenges of establishing a unified model, we built an innovative unified model (SX-model) by the “stepwise prediction” strategy combined with machine learning methods to obtain optimal screening methods. This model integrates classification and concentration models under the framework of the tree-based pipeline optimization technique (TPOT). Then, the extreme random forest (ERF) was selected as the classification model method with the highest accuracy among various methods through TPOT. This sensor array demonstrated sensitive detection of seven heavy metal ions in the range of 0.05–50 μM with an accuracy of 95.6%. The ability to identify binary mixed samples simultaneously and effectively was greatly enhanced. Furthermore, the metal ions in 288 real samples (obtained from lake water and soil samples) were effectively identified with 93.3% and 100% accuracy, respectively. The proposed original SX-model-assisted multi-emission sensor not only overcomes issues regarding low sensibility but also breaks the bottleneck of analysis methods, showing great application potential in the array detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦完成签到 ,获得积分10
刚刚
艺阳完成签到,获得积分10
1秒前
1秒前
俏皮大地完成签到 ,获得积分10
1秒前
LLL发布了新的文献求助10
1秒前
共享精神应助卡卡采纳,获得10
2秒前
2秒前
2秒前
2秒前
大菠萝发布了新的文献求助10
2秒前
HEIKU应助帅酷的小刺猬采纳,获得10
3秒前
深情的嘉熙完成签到,获得积分10
3秒前
顺利涵菡完成签到,获得积分20
3秒前
斯文败类应助Jack采纳,获得10
3秒前
3秒前
狂野觅云发布了新的文献求助10
4秒前
wanci应助yyy采纳,获得10
4秒前
Abao发布了新的文献求助10
5秒前
无花果应助jagger采纳,获得10
5秒前
旺大财发布了新的文献求助10
5秒前
tanbao完成签到,获得积分10
6秒前
共享精神应助MHB采纳,获得50
6秒前
美丽小蕾发布了新的文献求助10
6秒前
anan发布了新的文献求助10
6秒前
goodgoodstudy发布了新的文献求助10
6秒前
6秒前
huifang完成签到,获得积分10
6秒前
yan儿完成签到,获得积分10
7秒前
8秒前
Dipsy完成签到,获得积分10
8秒前
9秒前
英姑应助狂野觅云采纳,获得10
9秒前
晶晶妹妹完成签到,获得积分10
10秒前
黑妖完成签到,获得积分10
10秒前
10秒前
糊糊完成签到,获得积分10
10秒前
温婉的荷花完成签到,获得积分10
11秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762