In Vitro - in Vivo Extrapolation of Hepatic Clearance in Preclinical Species

体内 体外 药理学 基于生理学的药代动力学模型 药代动力学 代谢清除率 生物 化学 计算生物学 生物化学 生物技术
作者
David A. Tess,Sangwoo Ryu,Li Di
出处
期刊:Pharmaceutical Research [Springer Nature]
卷期号:39 (7): 1615-1632 被引量:21
标识
DOI:10.1007/s11095-022-03205-1
摘要

Accurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro - in vivo extrapolation (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using the parallel-tube and well-stirred models. Subsequently, IVIVE scaling factors (SFs) were derived to best predict in vivo clearance. The SFs for extended clearance classification system (ECCS) class 2/4 compounds, involving metabolic clearance, were generally small (≤ 2.6) using both LMs and HEPs with parallel-tube model, with the exception of the rodents (~ 2.4-4.6), suggesting in vitro reagents represent in vivo reasonably well. SFs for ECCS class 1A and 1B are generally higher than class 2/4 across the species, likely due to the contribution of transporter-mediated clearance that is under-represented with in vitro reagents. The parallel-tube model offered lower variability in clearance predictions over the well-stirred model. For compounds that likely demonstrate passive permeability-limited clearance in vitro, rat LM predicted in vivo clearance more accurately than HEP. This comprehensive analysis demonstrated reliable IVIVE can be achieved using LMs and HEPs. Evaluation of clearance IVIVE in preclinical species helps to better understand clearance mechanisms, establish more reliable IVIVE in human, and enhance our confidence in human clearance and PK prediction, while considering species differences in drug metabolizing enzymes and transporters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qing完成签到,获得积分10
刚刚
英俊的铭应助坚强小鸭子采纳,获得10
4秒前
4秒前
5秒前
嗯哼发布了新的文献求助10
6秒前
6秒前
6秒前
褚洙发布了新的文献求助10
8秒前
引子完成签到,获得积分10
8秒前
9秒前
研友_ZlvpxL完成签到,获得积分10
9秒前
修仙应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
子车茗应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
子车茗应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
14秒前
学术垃圾发布了新的文献求助10
17秒前
搜集达人应助羽渡尘采纳,获得10
17秒前
谷谷完成签到,获得积分20
18秒前
华仔应助SilentRP采纳,获得10
21秒前
丘比特应助默默的以松采纳,获得10
22秒前
Lucas应助严小赖采纳,获得10
24秒前
27秒前
pokikiii完成签到,获得积分10
27秒前
28秒前
斯文败类应助LYHHHH涵采纳,获得10
30秒前
33秒前
35秒前
SciGPT应助ll采纳,获得10
36秒前
顺利如冰完成签到,获得积分10
36秒前
852应助怕黑的丝袜采纳,获得10
39秒前
39秒前
清爽子默完成签到,获得积分10
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919