In Vitro - in Vivo Extrapolation of Hepatic Clearance in Preclinical Species

体内 体外 药理学 基于生理学的药代动力学模型 药代动力学 代谢清除率 生物 化学 计算生物学 生物化学 生物技术
作者
David A. Tess,Sangwoo Ryu,Li Di
出处
期刊:Pharmaceutical Research [Springer Nature]
卷期号:39 (7): 1615-1632 被引量:23
标识
DOI:10.1007/s11095-022-03205-1
摘要

Accurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro - in vivo extrapolation (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using the parallel-tube and well-stirred models. Subsequently, IVIVE scaling factors (SFs) were derived to best predict in vivo clearance. The SFs for extended clearance classification system (ECCS) class 2/4 compounds, involving metabolic clearance, were generally small (≤ 2.6) using both LMs and HEPs with parallel-tube model, with the exception of the rodents (~ 2.4-4.6), suggesting in vitro reagents represent in vivo reasonably well. SFs for ECCS class 1A and 1B are generally higher than class 2/4 across the species, likely due to the contribution of transporter-mediated clearance that is under-represented with in vitro reagents. The parallel-tube model offered lower variability in clearance predictions over the well-stirred model. For compounds that likely demonstrate passive permeability-limited clearance in vitro, rat LM predicted in vivo clearance more accurately than HEP. This comprehensive analysis demonstrated reliable IVIVE can be achieved using LMs and HEPs. Evaluation of clearance IVIVE in preclinical species helps to better understand clearance mechanisms, establish more reliable IVIVE in human, and enhance our confidence in human clearance and PK prediction, while considering species differences in drug metabolizing enzymes and transporters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形的烧鹅完成签到,获得积分20
1秒前
1秒前
1秒前
鱼会淹死吗应助马晓宁采纳,获得100
1秒前
2秒前
2秒前
2秒前
3秒前
ljy发布了新的文献求助10
3秒前
3秒前
4秒前
勤奋的一手完成签到,获得积分10
4秒前
liyi完成签到,获得积分10
5秒前
6秒前
huajanve发布了新的文献求助10
6秒前
顾思凡发布了新的文献求助10
6秒前
Duke发布了新的文献求助10
6秒前
科研通AI6应助找文献呢采纳,获得10
7秒前
华仔应助俭朴从寒采纳,获得10
7秒前
小小小何完成签到 ,获得积分10
7秒前
Magic麦发布了新的文献求助10
7秒前
Rorea完成签到,获得积分10
7秒前
老奶奶过马路完成签到,获得积分10
7秒前
7秒前
清飞发布了新的文献求助10
7秒前
妖娆发布了新的文献求助20
7秒前
kebing完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
YTTWMU发布了新的文献求助10
8秒前
铑氟钌发少年狂完成签到 ,获得积分10
9秒前
狂野的小笼包完成签到,获得积分10
10秒前
10秒前
orixero应助鲍建芳采纳,获得10
10秒前
12秒前
JW发布了新的文献求助10
12秒前
Duke完成签到,获得积分10
13秒前
英姑应助emotional采纳,获得10
13秒前
JamesPei应助温柔嚣张采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624