In Vitro - in Vivo Extrapolation of Hepatic Clearance in Preclinical Species

体内 体外 药理学 基于生理学的药代动力学模型 药代动力学 代谢清除率 生物 化学 计算生物学 生物化学 生物技术
作者
David A. Tess,Sangwoo Ryu,Li Di
出处
期刊:Pharmaceutical Research [Springer Nature]
卷期号:39 (7): 1615-1632 被引量:23
标识
DOI:10.1007/s11095-022-03205-1
摘要

Accurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro - in vivo extrapolation (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using the parallel-tube and well-stirred models. Subsequently, IVIVE scaling factors (SFs) were derived to best predict in vivo clearance. The SFs for extended clearance classification system (ECCS) class 2/4 compounds, involving metabolic clearance, were generally small (≤ 2.6) using both LMs and HEPs with parallel-tube model, with the exception of the rodents (~ 2.4-4.6), suggesting in vitro reagents represent in vivo reasonably well. SFs for ECCS class 1A and 1B are generally higher than class 2/4 across the species, likely due to the contribution of transporter-mediated clearance that is under-represented with in vitro reagents. The parallel-tube model offered lower variability in clearance predictions over the well-stirred model. For compounds that likely demonstrate passive permeability-limited clearance in vitro, rat LM predicted in vivo clearance more accurately than HEP. This comprehensive analysis demonstrated reliable IVIVE can be achieved using LMs and HEPs. Evaluation of clearance IVIVE in preclinical species helps to better understand clearance mechanisms, establish more reliable IVIVE in human, and enhance our confidence in human clearance and PK prediction, while considering species differences in drug metabolizing enzymes and transporters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助微笑的傲旋采纳,获得10
刚刚
领导范儿应助Aurora采纳,获得10
刚刚
归尘发布了新的文献求助10
刚刚
刚刚
Robot完成签到 ,获得积分10
1秒前
1秒前
糖布里部完成签到,获得积分10
2秒前
3秒前
5秒前
JamesPei应助无聊的幻露采纳,获得10
5秒前
啊建完成签到,获得积分10
5秒前
糖布里部发布了新的文献求助10
5秒前
olivia完成签到 ,获得积分10
6秒前
hanhan发布了新的文献求助10
6秒前
momo完成签到,获得积分10
6秒前
7秒前
林飞溯发布了新的文献求助30
7秒前
8秒前
8秒前
gmjinfeng完成签到,获得积分0
8秒前
9秒前
可爱的函函应助刘北固采纳,获得10
9秒前
yann完成签到,获得积分20
10秒前
大林发布了新的文献求助10
10秒前
FashionBoy应助喵喵喵啊采纳,获得10
11秒前
虚幻代芙发布了新的文献求助10
11秒前
11秒前
milv5完成签到,获得积分10
11秒前
田様应助Aurora采纳,获得10
11秒前
11完成签到,获得积分10
11秒前
12秒前
8577发布了新的文献求助30
12秒前
Square发布了新的文献求助10
13秒前
大个应助呃呃采纳,获得10
13秒前
深情安青应助chunyeliangchuan采纳,获得10
14秒前
chenchen发布了新的文献求助10
14秒前
BABY五齿完成签到,获得积分10
15秒前
15秒前
RX信完成签到,获得积分10
15秒前
酷酷的盼海完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013