已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm

文字2vec 支持向量机 情绪分析 计算机科学 机器学习 文字嵌入 人工智能 文字袋模型 特征提取 数据挖掘 领域(数学) 嵌入 数学 纯数学
作者
Styawati Styawati,Andi Nurkholis,Ahmad Ari Aldino,Selamet Samsugi,Emi Suryati,Ryan Puji Cahyono
标识
DOI:10.1109/ismode53584.2022.9742906
摘要

In the era of society 5.0, information technology is growing rapidly, one of which is in the field of transportation. The phenomenon of online transportation services is becoming increasingly popular among the public. With this phenomenon, many people have an opinion about online transportation services, both positive and negative comments. The purpose of this study is to conduct sentiment analysis on online transportation service applications, namely reviews of users of the Gojek and Grab applications on the Google Play Store. This research uses the word2vec text embedding model and the support vector machine (SVM) algorithm. Word2vec is used as a feature extraction model as a representation of words into vector form. The architecture of the word2vec model used is the skip-gram model. The Support Vector Machine (SVM) algorithm is used for the data classification process to determine the level of accuracy of the data sentiment used. The results of the tests carried out on the classification of sentiment analysis on online transportation applications show that the performance results are quite good namely, the Gojek application gets a higher performance value with an accuracy value of 89%, precision of 94%, re-call of 86% and f1-score of 90%. Meanwhile, the Grab application has an accuracy value of 87%, a precision of 94%, a re-call of 85%, and an f1-score of 89%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天天快乐应助霜刃采纳,获得10
4秒前
6秒前
图们江完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
飘萍过客完成签到,获得积分10
11秒前
13秒前
顾矜应助Ylasime采纳,获得10
14秒前
zhangyida发布了新的文献求助10
15秒前
情怀应助阿kkk采纳,获得10
15秒前
yy完成签到,获得积分10
16秒前
17秒前
_panacea发布了新的文献求助10
18秒前
momo123完成签到 ,获得积分10
18秒前
19秒前
19秒前
求助完成签到,获得积分10
21秒前
希望天下0贩的0应助Havoc采纳,获得10
22秒前
22秒前
yy发布了新的文献求助10
23秒前
凉皮发布了新的文献求助30
23秒前
ComeOn发布了新的文献求助10
24秒前
Lucas应助文献狂人采纳,获得10
24秒前
wuludie应助求助采纳,获得10
25秒前
yuchen完成签到,获得积分10
26秒前
26秒前
Ylasime发布了新的文献求助10
27秒前
Anzu发布了新的文献求助10
28秒前
28秒前
Akim应助zhangyida采纳,获得10
29秒前
30秒前
34秒前
wxa发布了新的文献求助10
34秒前
37秒前
今后应助Sanche采纳,获得10
39秒前
小二郎应助wxa采纳,获得10
39秒前
Havoc发布了新的文献求助10
42秒前
Anzu完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953289
求助须知:如何正确求助?哪些是违规求助? 3498662
关于积分的说明 11092681
捐赠科研通 3229194
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869365
科研通“疑难数据库(出版商)”最低求助积分说明 801435