亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm

文字2vec 支持向量机 情绪分析 计算机科学 机器学习 文字嵌入 人工智能 文字袋模型 特征提取 数据挖掘 领域(数学) 嵌入 数学 纯数学
作者
Styawati Styawati,Andi Nurkholis,Ahmad Ari Aldino,Selamet Samsugi,Emi Suryati,Ryan Puji Cahyono
标识
DOI:10.1109/ismode53584.2022.9742906
摘要

In the era of society 5.0, information technology is growing rapidly, one of which is in the field of transportation. The phenomenon of online transportation services is becoming increasingly popular among the public. With this phenomenon, many people have an opinion about online transportation services, both positive and negative comments. The purpose of this study is to conduct sentiment analysis on online transportation service applications, namely reviews of users of the Gojek and Grab applications on the Google Play Store. This research uses the word2vec text embedding model and the support vector machine (SVM) algorithm. Word2vec is used as a feature extraction model as a representation of words into vector form. The architecture of the word2vec model used is the skip-gram model. The Support Vector Machine (SVM) algorithm is used for the data classification process to determine the level of accuracy of the data sentiment used. The results of the tests carried out on the classification of sentiment analysis on online transportation applications show that the performance results are quite good namely, the Gojek application gets a higher performance value with an accuracy value of 89%, precision of 94%, re-call of 86% and f1-score of 90%. Meanwhile, the Grab application has an accuracy value of 87%, a precision of 94%, a re-call of 85%, and an f1-score of 89%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
19秒前
tiantian完成签到 ,获得积分10
21秒前
顾矜应助zzb采纳,获得10
22秒前
26秒前
zzb完成签到,获得积分10
30秒前
32秒前
zzb发布了新的文献求助10
32秒前
40秒前
42秒前
默己完成签到 ,获得积分10
46秒前
小张真的困啦完成签到,获得积分10
53秒前
null应助小张真的困啦采纳,获得10
57秒前
57秒前
1分钟前
1分钟前
皮皮发布了新的文献求助10
1分钟前
小二郎应助顾绯采纳,获得10
1分钟前
1分钟前
1分钟前
Ava应助皮皮采纳,获得10
1分钟前
1分钟前
1分钟前
Tingshuo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Tingshuo完成签到,获得积分10
1分钟前
皮皮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
顾绯发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ariel完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
合适的如天完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091