清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis

数据科学 计算机科学 标准化 数据质量 数据提取 能量(信号处理) 风险分析(工程) 服务(商务) 经济 经济 操作系统 统计 法学 医学 数学 梅德林 政治学
作者
Simiao Ren,Wei Hu,Kyle Bradbury,Dylan Harrison-Atlas,Valeri, Laura Malaguzzi,Brian J. Murray,Jordan M. Malof
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119876-119876
标识
DOI:10.1016/j.apenergy.2022.119876
摘要

High quality energy systems information is a crucial input to energy systems research, modeling, and decision-making. Unfortunately, actionable information about energy systems is often of limited availability, incomplete, or only accessible for a substantial fee or through a non-disclosure agreement. Recently, remotely sensed data (e.g., satellite imagery, aerial photography) have emerged as a potentially rich source of energy systems information. However, the use of these data is frequently challenged by its sheer volume and complexity, precluding manual analysis. Recent breakthroughs in machine learning have enabled automated and rapid extraction of useful information from remotely sensed data, facilitating large-scale acquisition of critical energy system variables. Here we present a systematic review of the literature on this emerging topic, providing an in-depth survey and review of papers published within the past two decades. We first taxonomize the existing literature into ten major areas, spanning the energy value chain. Within each research area, we distill and critically discuss major features that are relevant to energy researchers, including, for example, key challenges regarding the accessibility and reliability of the methods. We then synthesize our findings to identify limitations and trends in the literature as a whole, and discuss opportunities for innovation. These include the opportunity to extend the methods beyond electricity to broader energy systems and wider geographic areas; and the ability to expand the use of these methods in research and decision making as satellite data become cheaper and easier to access. We also find that there are persistent challenges: limited standardization and rigor of performance assessments; limited sharing of code, which would improve replicability; and a limited consideration of the ethics and privacy of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
段誉完成签到 ,获得积分10
1分钟前
爱静静发布了新的文献求助10
1分钟前
2分钟前
赛韓吧完成签到 ,获得积分10
2分钟前
Wfmmm完成签到,获得积分10
2分钟前
称心如意完成签到 ,获得积分10
3分钟前
3分钟前
麻花阳应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
麻花阳应助科研通管家采纳,获得10
3分钟前
4分钟前
5分钟前
5分钟前
YY发布了新的文献求助10
5分钟前
YY完成签到,获得积分10
5分钟前
ffff完成签到 ,获得积分10
5分钟前
6分钟前
SciGPT应助白华苍松采纳,获得10
6分钟前
MchemG完成签到,获得积分0
6分钟前
ygl0217发布了新的文献求助10
6分钟前
ygl0217完成签到,获得积分10
6分钟前
nick完成签到,获得积分10
7分钟前
小胖完成签到 ,获得积分10
7分钟前
苗条绝义应助ceeray23采纳,获得20
7分钟前
枫绣发布了新的文献求助10
7分钟前
9分钟前
9分钟前
颜值有力发布了新的文献求助10
9分钟前
10分钟前
11分钟前
12分钟前
颜值有力发布了新的文献求助10
12分钟前
科研通AI5应助展锋采纳,获得10
12分钟前
852应助qwdqw采纳,获得10
12分钟前
12分钟前
展锋发布了新的文献求助10
12分钟前
枫绣发布了新的文献求助10
13分钟前
小蘑菇应助白华苍松采纳,获得10
13分钟前
领导范儿应助科研通管家采纳,获得10
13分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562029
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412620
捐赠科研通 2835953
什么是DOI,文献DOI怎么找? 1558839
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878