Feeling good, doing good, and getting ahead: A meta-analytic investigation of the outcomes of prosocial motivation at work.

亲社会行为 感觉 心理学 社会心理学 工作(物理) 荟萃分析 向前看 计算机科学 医学 机械工程 内科学 工程类 算法
作者
Huiyao Liao,Rong Su,Thomas Ptashnik,Jordan Nielsen
出处
期刊:Psychological Bulletin [American Psychological Association]
卷期号:148 (3-4): 158-198 被引量:47
标识
DOI:10.1037/bul0000362
摘要

In recent years, a rapidly growing literature has shed light on important costs and benefits of prosocial motivation in the workplace.However, researchers have studied prosocial motivation using various labels, conceptualizations, and operationalizations, leaving this body of knowledge fragmented.In this study, we contribute to the literature by providing an integrated framework that organizes extant constructs and measures of prosocial motives along two dimensions: level of autonomy (discretionary/obligatory) and level of generality (global/contextual/positional).Drawing upon this framework, we conducted a meta-analysis with 252 samples and 666 effect sizes to examine the effects of prosocial motivation on workplace outcomes.Moderator analyses were performed to resolve inconsistencies in the empirical literature and understand the context under which prosocial motivation had the strongest or weakest effect.We found that prosocial motivation, in general, was beneficial for employee well-being ( = .23),prosocial behavior ( = .35),job performance ( = .20),and career success ( = .06).The direction and magnitude of these effects depended on the autonomy, generality, and measurement of prosocial motivation, the nature of the outcome (i.e., type of prosocial behavior, subjectivity of performance measures, and forms of career success), as well as the cultural context.Importantly, prosocial motivation had incremental validity above and beyond general cognitive ability and Big Five personality traits for predicting all four outcomes.We discuss the theoretical, methodological, and practical implications from these findings and offer a guiding framework for future research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的雍应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
mofan应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
mofan应助科研通管家采纳,获得10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
轨迹应助科研通管家采纳,获得20
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
Fancy应助Marciu33采纳,获得30
1秒前
lanheqingniao发布了新的文献求助10
1秒前
赵子岚发布了新的文献求助10
2秒前
田様应助我要资料啊采纳,获得10
3秒前
按时发布了新的文献求助10
3秒前
是多多呀完成签到 ,获得积分10
3秒前
wyyj完成签到,获得积分20
4秒前
蓝天完成签到,获得积分10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762881
求助须知:如何正确求助?哪些是违规求助? 5537393
关于积分的说明 15403910
捐赠科研通 4898922
什么是DOI,文献DOI怎么找? 2635190
邀请新用户注册赠送积分活动 1583298
关于科研通互助平台的介绍 1538405