Feeling good, doing good, and getting ahead: A meta-analytic investigation of the outcomes of prosocial motivation at work.

亲社会行为 感觉 心理学 社会心理学 工作(物理) 荟萃分析 向前看 计算机科学 医学 算法 机械工程 内科学 工程类
作者
Huiyao Liao,Rong Su,Thomas Ptashnik,Jordan Nielsen
出处
期刊:Psychological Bulletin [American Psychological Association]
卷期号:148 (3-4): 158-198 被引量:35
标识
DOI:10.1037/bul0000362
摘要

In recent years, a rapidly growing literature has shed light on important costs and benefits of prosocial motivation in the workplace.However, researchers have studied prosocial motivation using various labels, conceptualizations, and operationalizations, leaving this body of knowledge fragmented.In this study, we contribute to the literature by providing an integrated framework that organizes extant constructs and measures of prosocial motives along two dimensions: level of autonomy (discretionary/obligatory) and level of generality (global/contextual/positional).Drawing upon this framework, we conducted a meta-analysis with 252 samples and 666 effect sizes to examine the effects of prosocial motivation on workplace outcomes.Moderator analyses were performed to resolve inconsistencies in the empirical literature and understand the context under which prosocial motivation had the strongest or weakest effect.We found that prosocial motivation, in general, was beneficial for employee well-being ( = .23),prosocial behavior ( = .35),job performance ( = .20),and career success ( = .06).The direction and magnitude of these effects depended on the autonomy, generality, and measurement of prosocial motivation, the nature of the outcome (i.e., type of prosocial behavior, subjectivity of performance measures, and forms of career success), as well as the cultural context.Importantly, prosocial motivation had incremental validity above and beyond general cognitive ability and Big Five personality traits for predicting all four outcomes.We discuss the theoretical, methodological, and practical implications from these findings and offer a guiding framework for future research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
langzi完成签到,获得积分10
2秒前
haifang完成签到,获得积分10
2秒前
大个应助zhui采纳,获得10
2秒前
哎呀完成签到 ,获得积分10
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
4秒前
Wang完成签到,获得积分10
4秒前
请叫我风吹麦浪应助kevin采纳,获得20
5秒前
5秒前
5秒前
吃点水果保护局完成签到 ,获得积分10
6秒前
gs完成签到,获得积分10
6秒前
Xyyy完成签到,获得积分10
6秒前
7秒前
白石杏完成签到,获得积分10
9秒前
ll200207完成签到,获得积分10
10秒前
凶狠的乐巧完成签到,获得积分10
10秒前
Lin发布了新的文献求助10
11秒前
三七发布了新的文献求助10
11秒前
11秒前
鸣隐发布了新的文献求助10
11秒前
12秒前
12秒前
软豆皮完成签到,获得积分10
12秒前
lan完成签到,获得积分10
13秒前
英姑应助松松果采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
chillin发布了新的文献求助10
15秒前
zhui发布了新的文献求助10
15秒前
薪炭林完成签到,获得积分10
16秒前
Rrr发布了新的文献求助10
16秒前
16秒前
SCISSH完成签到 ,获得积分10
16秒前
FEI发布了新的文献求助10
17秒前
科研通AI5应助奔奔采纳,获得10
18秒前
星辰大海应助八八采纳,获得20
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794