An improved machine learning approach for predicting granular flows

超参数 粒子(生态学) 离散元法 加速度 算法 卷积神经网络 计算机科学 流量(数学) 人工智能 机械 机器学习 模拟 物理 地质学 经典力学 海洋学
作者
Dan Xu,Yansong Shen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:450: 138036-138036 被引量:6
标识
DOI:10.1016/j.cej.2022.138036
摘要

Granular flow is widely practised in many industry processes. The previous prediction methods of granular flow are limited in efficiency, including conventional Discrete Element Modelling (DEM) where direct computation of particle collisions is very time-consuming; and recent machine learning (ML) approach where particle positions were straight predicted and particle–particle and particle–wall collisions were not considered separately, likely compromising the prediction accuracy. In this study, an improved ML approach is developed for predicting granular flows efficiently in terms of computational speed and accuracy. In the proposed ML approach, inspired by Newton's second law's concept – from particle acceleration to calculate velocity and then position, a new continuous convolutional neural network (CNN) is established to predict the particles' accelerations first based on the particle–particle and particle–wall collisions separately, and the particle accelerations are used for calculating particle velocities and finally particle positions. The ML approach is applied to a typical granular flow - particle packing for demonstration. A dataset of 100 scenes of DEM simulations in one scenario is established for network training and examination. The results show that, in long-sequence predictions, the accuracy of the ML approach is three times higher than the previous ML approach. The effects of hyperparameters in the network are quantified. Then the ML approach with the optimized hyperparameters is used in additional three scenarios for further examining the prediction effectiveness. It is indicated that the improved ML approach can satisfactorily capture the morphology of granular flows under three new different scenarios; and the computational cost is only one-seventh compared to the DEM approach under the present conditions. The ML approach provides a simple and time-effective tool for simulating granular flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
刚刚
痴情的冰淇淋完成签到 ,获得积分10
刚刚
Maria完成签到,获得积分10
刚刚
碧蓝冰烟完成签到,获得积分20
1秒前
ddd发布了新的文献求助10
1秒前
耍酷千山发布了新的文献求助10
2秒前
英俊的铭应助小鱼采纳,获得10
2秒前
3秒前
user_huang发布了新的文献求助10
3秒前
深情安青应助YA采纳,获得10
4秒前
芒果完成签到 ,获得积分10
4秒前
Maria发布了新的文献求助20
5秒前
6秒前
顺顺ll完成签到,获得积分20
6秒前
研友_LX66qZ发布了新的文献求助10
7秒前
斯文败类应助dtliu采纳,获得10
8秒前
顺顺ll发布了新的文献求助10
9秒前
欢呼雁完成签到,获得积分20
11秒前
龑龍天发布了新的文献求助10
11秒前
不安毛豆应助何觅夏采纳,获得10
11秒前
12秒前
wanci应助小巧的海瑶采纳,获得10
12秒前
123应助AZX加油采纳,获得20
13秒前
Jasper应助liu采纳,获得10
14秒前
123应助聪明可爱小绘理采纳,获得20
14秒前
15秒前
15秒前
Lucas应助123采纳,获得10
15秒前
16秒前
桐桐应助叫滚滚采纳,获得10
16秒前
duhp完成签到,获得积分10
17秒前
18秒前
孙漂亮完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
白小白完成签到,获得积分10
23秒前
充电宝应助user_huang采纳,获得10
23秒前
小王同学应助独特平灵采纳,获得10
23秒前
BY完成签到,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297208
求助须知:如何正确求助?哪些是违规求助? 2932718
关于积分的说明 8458529
捐赠科研通 2605409
什么是DOI,文献DOI怎么找? 1422272
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644603