已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved machine learning approach for predicting granular flows

超参数 粒子(生态学) 离散元法 加速度 算法 卷积神经网络 计算机科学 流量(数学) 人工智能 机械 机器学习 模拟 物理 地质学 经典力学 海洋学
作者
Dan Xu,Yansong Shen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:450: 138036-138036 被引量:6
标识
DOI:10.1016/j.cej.2022.138036
摘要

Granular flow is widely practised in many industry processes. The previous prediction methods of granular flow are limited in efficiency, including conventional Discrete Element Modelling (DEM) where direct computation of particle collisions is very time-consuming; and recent machine learning (ML) approach where particle positions were straight predicted and particle–particle and particle–wall collisions were not considered separately, likely compromising the prediction accuracy. In this study, an improved ML approach is developed for predicting granular flows efficiently in terms of computational speed and accuracy. In the proposed ML approach, inspired by Newton's second law's concept – from particle acceleration to calculate velocity and then position, a new continuous convolutional neural network (CNN) is established to predict the particles' accelerations first based on the particle–particle and particle–wall collisions separately, and the particle accelerations are used for calculating particle velocities and finally particle positions. The ML approach is applied to a typical granular flow - particle packing for demonstration. A dataset of 100 scenes of DEM simulations in one scenario is established for network training and examination. The results show that, in long-sequence predictions, the accuracy of the ML approach is three times higher than the previous ML approach. The effects of hyperparameters in the network are quantified. Then the ML approach with the optimized hyperparameters is used in additional three scenarios for further examining the prediction effectiveness. It is indicated that the improved ML approach can satisfactorily capture the morphology of granular flows under three new different scenarios; and the computational cost is only one-seventh compared to the DEM approach under the present conditions. The ML approach provides a simple and time-effective tool for simulating granular flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动笑完成签到,获得积分10
1秒前
干净的时光完成签到 ,获得积分10
3秒前
云祱完成签到,获得积分10
3秒前
8秒前
kk完成签到 ,获得积分10
10秒前
香蕉觅云应助dandan采纳,获得10
10秒前
13秒前
13秒前
14秒前
斯文钢笔完成签到 ,获得积分10
15秒前
B站萧亚轩发布了新的文献求助10
15秒前
cayde发布了新的文献求助10
16秒前
16秒前
余南发布了新的文献求助10
16秒前
17秒前
华仔应助虚幻踏歌采纳,获得10
18秒前
19秒前
22秒前
Wei发布了新的文献求助10
22秒前
英俊绿柏应助荷子采纳,获得10
24秒前
25秒前
26秒前
lumi完成签到,获得积分10
27秒前
28秒前
8R60d8应助荔枝采纳,获得10
29秒前
Mayday发布了新的文献求助10
29秒前
俭朴紫寒发布了新的文献求助10
30秒前
31秒前
34秒前
小人物的坚持完成签到 ,获得积分10
35秒前
幸福广山发布了新的文献求助10
36秒前
36秒前
40秒前
qiu发布了新的文献求助10
41秒前
苏苏发布了新的文献求助20
43秒前
46秒前
Jasmine发布了新的文献求助10
46秒前
wanci应助cayde采纳,获得10
46秒前
yf完成签到 ,获得积分10
47秒前
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210