TransRoadNet: A Novel Road Extraction Method for Remote Sensing Images via Combining High-Level Semantic Feature and Context

计算机科学 人工智能 特征提取 卷积神经网络 推论 信息抽取 模式识别(心理学) 背景(考古学) 计算机视觉 地理 考古
作者
Zhigang Yang,Daoxiang Zhou,Ying Yang,Jiapeng Zhang,Zehua Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2022.3171973
摘要

Road extraction is a significant research hotspot in the area of remote sensing images. Extracting an accurate road network from remote sensing images is still challenging, because some objects in the images are similar to the road, and some results are discontinuous due to the occlusion. Recently, convolutional neural networks (CNNs) have shown their power in a road extraction process. However, the contextual information cannot be captured effectively by those CNNs. Based on CNNs, combining with high-level semantic features and foreground contextual information (FCI), a novel road extraction method for remote sensing images is proposed in this letter. First, the position attention (PA) mechanism is designed to enhance the expression ability for the road feature. Then, the contextual information extraction module (CIEM) is constructed to capture the road contextual information in the images. At last, an FCI supplement module (FCISM) is proposed to provide foreground context information at different stages of the decoder, which can improve the inference ability for the occluded area. Extensive experiments on the DeepGlobal road dataset showed that the proposed method outperforms the existing methods in accuracy, intersection over union (IoU), precision, and $F1$ score and yields competitive recall results, which demonstrated the efficiency of the new model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
关中人完成签到,获得积分10
1秒前
迅速冥茗发布了新的文献求助10
3秒前
香蕉奎应助笨笨从凝采纳,获得10
5秒前
6秒前
7秒前
烟花应助西门吹雪9527采纳,获得10
7秒前
hnxxangel完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI2S应助estk采纳,获得10
10秒前
苞大米发布了新的文献求助10
11秒前
万能图书馆应助神奇阳光采纳,获得10
13秒前
syl发布了新的文献求助10
13秒前
piaopiao1122发布了新的文献求助10
13秒前
bobo发布了新的文献求助10
15秒前
15秒前
shinysparrow应助乐观的非笑采纳,获得100
17秒前
17秒前
17秒前
苞大米完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
piaopiao1122完成签到,获得积分10
23秒前
我是老大应助爹爹采纳,获得10
24秒前
小小猪完成签到,获得积分10
24秒前
26秒前
香蕉奎完成签到,获得积分20
26秒前
小旺旺发布了新的文献求助20
26秒前
29秒前
xiaowang发布了新的文献求助50
29秒前
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
在水一方应助科研通管家采纳,获得10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503