亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial neural network modeling in environmental radioactivity studies – A review

人工神经网络 计算机科学 范围(计算机科学) 适应性 机器学习 人工智能 集合(抽象数据类型) 数据挖掘 生态学 生物 程序设计语言
作者
Snežana Dragović
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:847: 157526-157526 被引量:34
标识
DOI:10.1016/j.scitotenv.2022.157526
摘要

The development of nuclear technologies has directed environmental radioactivity research toward continuously improving existing and developing new models for different interpolation, optimization, and classification tasks. Due to their adaptability to new data without knowing the actual modeling function, artificial neural networks (ANNs) are extensively used to resolve the tasks for which the application of traditional statistical methods has not provided an adequate response. This study presents an overview of ANN-based modeling in environmental radioactivity studies, including identifying and quantifying radionuclides, predicting their migration in the environment, mapping their distribution, optimizing measurement methodologies, monitoring processes in nuclear plants, and real-time data analysis. Special attention is paid to highlighting the scope of the different case studies and discussing the techniques used in model development over time. The performances of ANNs are evaluated from the perspective of prediction accuracy, emphasizing the advantages and limitations encountered in their use. The most critical elements in model optimization were identified as network structure, selection of input parameters, the properties of input data set, and applied learning algorithm. The analysis of strategies and methods for improving the performance of ANNs has shown that developing integrated and hybrid artificial intelligent tools could provide a new path in environmental radioactivity modeling toward more reliable outcomes and higher accuracy predictions. The review highlights the potential of neural networks and challenges in their application in environmental radioactivity studies and proposes directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingcoffee完成签到 ,获得积分10
27秒前
33秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Yan发布了新的文献求助10
2分钟前
豆乳米麻薯完成签到 ,获得积分10
2分钟前
2分钟前
桐桐应助L&M采纳,获得10
2分钟前
2分钟前
L&M发布了新的文献求助10
2分钟前
3分钟前
3分钟前
科研通AI2S应助L&M采纳,获得10
3分钟前
4分钟前
yuki发布了新的文献求助10
4分钟前
4分钟前
wsy完成签到,获得积分10
4分钟前
vera完成签到 ,获得积分10
4分钟前
yuki完成签到,获得积分20
4分钟前
Gloria完成签到,获得积分10
4分钟前
5分钟前
Gloria发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
达雨发布了新的文献求助10
6分钟前
6分钟前
123完成签到,获得积分10
6分钟前
lihh发布了新的文献求助10
6分钟前
善学以致用应助达雨采纳,获得10
6分钟前
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686762
求助须知:如何正确求助?哪些是违规求助? 3237091
关于积分的说明 9829486
捐赠科研通 2949062
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738342