Edge-Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything

计算机科学 云计算 边缘计算 分布式计算 调度(生产过程) 作业车间调度 强化学习 互联网 大数据 加密 GSM演进的增强数据速率 执行人 计算机网络 人工智能 数据挖掘 操作系统 数学优化 布线(电子设计自动化) 数学 政治学 法学
作者
Xiaokang Zhou,Wei Liang,Ke Yan,Weimin Li,Kevin I‐Kai Wang,Jianhua Ma,Qun Jin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 3295-3304 被引量:88
标识
DOI:10.1109/jiot.2022.3179231
摘要

Nowadays, the concept of Internet of Everything (IoE) is becoming a hotly discussed topic, which is playing an increasingly indispensable role in modern intelligent applications. These applications are known for their real-time requirements under limited network and computing resources, thus it becomes a highly demanding task to transform and compute tremendous amount of raw data in a cloud center. The edge–cloud computing infrastructure allows a large amount of data to be processed on nearby edge nodes and then only the extracted and encrypted key features are transmitted to the data center. This offers the potential to achieve an end–edge–cloud-based big data intelligence for IoE in a typical two-stage data processing scheme, while satisfying a data security constraint. In this study, a deep-reinforcement-learning-enhanced two-stage scheduling (DRL-TSS) model is proposed to address the NP-hard problem in terms of operation complexity in end–edge–cloud Internet of Things systems, which is able to allocate computing resources within an edge-enabled infrastructure to ensure computing task to be completed with minimum cost. A presorting scheme based on Johnson’s rule is developed and applied to preprocess the two-stage tasks on multiple executors, and a DRL mechanism is developed to minimize the overall makespan based on a newly designed instant reward that takes into account the maximal utilization of each executor in edge-enabled two-stage scheduling. The performance of our method is evaluated and compared with three existing scheduling techniques, and experimental results demonstrate the ability of our proposed algorithm in achieving better learning efficiency and scheduling performance with a 1.1-approximation to the targeted optimal IoE applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuyu发布了新的文献求助10
刚刚
小紫发布了新的文献求助10
1秒前
Ljc完成签到,获得积分10
1秒前
耍酷背包完成签到,获得积分10
5秒前
5秒前
yihe发布了新的文献求助50
7秒前
吃鱼完成签到 ,获得积分10
8秒前
秀丽松思完成签到 ,获得积分10
8秒前
甜美的瑾瑜完成签到,获得积分10
8秒前
Baneyhua完成签到,获得积分20
8秒前
大个应助ggun采纳,获得10
9秒前
10秒前
CodeCraft应助ltft采纳,获得10
10秒前
RosyBai发布了新的文献求助10
12秒前
许子健发布了新的文献求助30
12秒前
Yoh1220完成签到,获得积分10
13秒前
14秒前
15秒前
CipherSage应助深情的不可采纳,获得10
15秒前
17秒前
学术芽完成签到,获得积分10
17秒前
领导范儿应助Baneyhua采纳,获得10
17秒前
汉堡包应助YOLO采纳,获得10
19秒前
水濑心源发布了新的文献求助10
19秒前
19秒前
20秒前
Yoh1220发布了新的文献求助10
22秒前
ltft发布了新的文献求助10
23秒前
许子健发布了新的文献求助10
25秒前
26秒前
26秒前
xyawl425发布了新的文献求助10
27秒前
28秒前
zht发布了新的文献求助10
29秒前
小胡完成签到,获得积分10
29秒前
wzz完成签到,获得积分10
29秒前
30秒前
31秒前
希望天下0贩的0应助nano采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388