A Real-Time CNN-Based Lightweight Mobile Masked Face Recognition System

计算机科学 面部识别系统 卷积神经网络 人工智能 生物识别 面子(社会学概念) 认证(法律) 移动设备 深度学习 访问控制 模式识别(心理学) 机器学习 计算机安全 万维网 社会科学 社会学
作者
Büşra Kocaçınar,Bilal Tas,Fatma Patlar Akbulut,Çağatay Çatal,Deepti Mishra
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 63496-63507 被引量:18
标识
DOI:10.1109/access.2022.3182055
摘要

Due to the global spread of the Covid-19 virus and its variants, new needs and problems have emerged during the pandemic that deeply affects our lives.Wearing masks as the most effective measure to prevent the spread and transmission of the virus has brought various security vulnerabilities.Today we are going through times when wearing a mask is part of our lives, thus it is very important to identify individuals who violate this rule.Besides, this pandemic makes the traditional biometric authentication systems less effective in many cases such as facial security checks, gated community access control, and facial attendance.So far, in the area of masked face recognition, a small number of contributions have been accomplished.It is definitely imperative to enhance the recognition performance of the traditional face recognition methods on masked faces.Existing masked face recognition approaches are mostly performed based on deep learning models that require plenty of samples.Nevertheless, currently, there are not enough image datasets that contain a masked face.As such, the main objective of this study is to identify individuals who do not use masks or use them incorrectly and to verify their identity by building a masked face dataset.On this basis, a novel real-time masked detection service and face recognition mobile application were developed based on an ensemble of fine-tuned lightweight deep Convolutional Neural Networks (CNN).The proposed model achieves 90.40% validation accuracy using 12 individuals' 1849 face samples.Experiments on the five datasets built in this research demonstrate that the proposed system notably enhances the performance of masked face recognition compared to the other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小笼包完成签到,获得积分10
2秒前
yibiy完成签到,获得积分10
2秒前
3秒前
小熊发布了新的文献求助10
3秒前
4秒前
hode完成签到,获得积分20
4秒前
完美世界应助Willa采纳,获得10
5秒前
7秒前
22222发布了新的文献求助10
7秒前
7秒前
hode发布了新的文献求助10
8秒前
寂寞的白筠完成签到,获得积分10
11秒前
yhh0624发布了新的文献求助10
11秒前
AllenXia发布了新的文献求助10
12秒前
12秒前
13秒前
完美世界应助王老师采纳,获得10
16秒前
mmddlj完成签到 ,获得积分10
17秒前
17秒前
17秒前
wzx发布了新的文献求助10
17秒前
郭n完成签到 ,获得积分10
18秒前
18秒前
21秒前
余烬完成签到,获得积分10
21秒前
科研通AI5应助史迪奇采纳,获得30
22秒前
小孙孙发布了新的文献求助20
23秒前
24秒前
TRY发布了新的文献求助10
25秒前
顾矜应助自然的敏采纳,获得30
27秒前
淡淡816完成签到,获得积分10
28秒前
李李发布了新的文献求助10
29秒前
30秒前
自由的水绿完成签到 ,获得积分10
32秒前
32秒前
wzx完成签到,获得积分10
33秒前
plumcute完成签到,获得积分10
33秒前
33秒前
不吃糖发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320282
关于积分的说明 10199345
捐赠科研通 3034932
什么是DOI,文献DOI怎么找? 1665302
邀请新用户注册赠送积分活动 796802
科研通“疑难数据库(出版商)”最低求助积分说明 757570