Multi-Bolt looseness detection using a new acoustic emission strategy

声发射 分类器(UML) Softmax函数 模式识别(心理学) 计算机科学 人工智能 二元分类 工程类 结构工程 支持向量机 声学 人工神经网络 物理
作者
Furui Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (3): 1543-1553 被引量:12
标识
DOI:10.1177/14759217221110589
摘要

In mechanical and aerospace engineering, different components are usually integrated together via bolted connections. Compared to the rivet joint and welding joint, the bolted connection is preferred in some cases due to its easy-to-operation and low-cost. However, the bolt self-loosening caused by vibration or other issues (e.g., improper installation and chemical corrosion) may induce severe accidents. Therefore, in this paper, the author proposes a new strategy based on the acoustic emission (AE) technique to detect bolt looseness. To the best of the author’s knowledge, this research is the first attempt to identify multi-bolt looseness via the AE-based method. Particularly, the main contribution is that the author proposes a new shapelet-enhanced AE method that employs a newly developed dual-shapelet networks classifier to discriminate AE waves. The dual-shapelet networks classifier consists of sample-specific shapelets, which is sensitive to the difference among various categories, and category-specific shapelets derived from auxiliary binary classifiers. The objective of category-specific shapelets is to address the imbalanced classification task, that is, discriminating minority categories. Then, the sample-specific shapelets and category-specific shapelets are combined to extract features from AE signals under different multi-bolt looseness cases, and the final classification is achieved by feeding the extracted features into a softmax layer. Finally, the author conducts an experiment to verify the effectiveness of the proposed method. Moreover, by comparing the proposed method’s performance with two baselines, the advantages of the shapelet-enhanced AE method can be demonstrated. Overall, this research demonstrates that the AE technique is valid to characterize friction and collision between asperities on the bolted interface, thus providing a new direction for multi-bolt looseness detection, and the proposed shapelet-enhanced AE method has substantial potential in the field of structural health monitoring (SHM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wks666666完成签到,获得积分10
1秒前
心落失完成签到,获得积分10
1秒前
2秒前
ss发布了新的文献求助10
2秒前
2秒前
2秒前
研友_ZGD9o8完成签到,获得积分10
3秒前
3秒前
壮观果汁发布了新的文献求助10
4秒前
124关闭了124文献求助
5秒前
香蕉海白发布了新的文献求助10
6秒前
dada完成签到,获得积分20
6秒前
shujie完成签到,获得积分20
6秒前
脑洞疼应助lingmuhuahua采纳,获得10
7秒前
dearrrwu完成签到,获得积分10
7秒前
胖楹子完成签到,获得积分10
7秒前
7秒前
科研路上的干饭桶完成签到,获得积分10
8秒前
所所应助落后的手套采纳,获得10
9秒前
9秒前
二月完成签到,获得积分10
10秒前
胖楹子发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
NexusExplorer应助sunzhuxi采纳,获得10
13秒前
13秒前
vivian发布了新的文献求助10
14秒前
14秒前
高贵逍遥发布了新的文献求助10
17秒前
17秒前
落后的手套完成签到,获得积分20
18秒前
舒心的紫雪完成签到 ,获得积分10
18秒前
18秒前
愤怒的卓越完成签到,获得积分10
19秒前
lingmuhuahua发布了新的文献求助10
19秒前
机智的紫丝完成签到,获得积分10
20秒前
21秒前
白白完成签到,获得积分10
21秒前
羊青丝完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407