亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of hydrogen generation process from the hydrolysis of activated Al–NaCl–SiC composites using Taguchi method

田口方法 球磨机 材料科学 扫描电子显微镜 粒度 复合材料 化学 有机化学
作者
Serdar Karaoğlu,S. Yolcular
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (66): 28289-28302 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.06.171
摘要

Novel Al–NaCl–SiC composites for hydrogen generation were prepared by mechanical ball milling. NaCl is a well-known salt for the activation of Al. SiC, which is much harder and more rigid than NaCl, was added as a milling aid. In this optimization study Taguchi method was used for design of experiments. In the experimental design using the L16 (4 ˆ 3) orthogonal array, 4-levels of NaCl and SiC ratios and mechanical milling times were used. Confirmation tests were carried out for the optimum levels determined by Taguchi method. An analysis of variance was performed to determine the relative importance of the control factors and their contribution to the performance characteristic. It was found that NaCl has the greatest effect on hydrogen generation performance, followed by mechanical milling time and SiC ratio. The highest values of these parameters were determined as optimum levels for maximum hydrogen generation. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analyzes were performed to investigate the relation between hydrogen generation performance and morphology of milled powders. The grain (crystal) dimensions of some milled powders were calculated from the XRD data using the Scherrer equation. Grain refinement, reduction in grain size during mechanical milling was used as a measure of the severity of plastic deformation. It was observed that the grain sizes were reduced to a few tens of nanometers with the ball milling process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
量子星尘发布了新的文献求助10
10秒前
zqr完成签到,获得积分10
22秒前
忐忑的烤鸡完成签到,获得积分10
35秒前
46秒前
Raunio发布了新的文献求助10
51秒前
58秒前
1分钟前
1分钟前
SiboN发布了新的文献求助10
1分钟前
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
2分钟前
比格大王完成签到,获得积分10
2分钟前
2分钟前
tongtong12345发布了新的文献求助40
2分钟前
2分钟前
冷静尔芙发布了新的文献求助10
2分钟前
2分钟前
Otter完成签到,获得积分10
2分钟前
冷静尔芙完成签到,获得积分10
2分钟前
今后应助求求好心人采纳,获得10
2分钟前
潇洒诗槐完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
潇洒诗槐发布了新的文献求助10
3分钟前
温暖的乐蓉完成签到,获得积分10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
长尾巴的人类完成签到,获得积分10
3分钟前
3分钟前
ada发布了新的文献求助10
3分钟前
比格大王发布了新的文献求助20
4分钟前
所所应助郭楠楠采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359