Attention-Cooperated Reinforcement Learning for Multi-agent Path Planning

计算机科学 强化学习 路径(计算) 人工智能 钢筋 心理学 社会心理学 计算机网络
作者
Jinchao Ma,Defu Lian
出处
期刊:Lecture Notes in Computer Science 卷期号:: 272-290 被引量:1
标识
DOI:10.1007/978-3-031-11217-1_20
摘要

Multi-agent path finding (MAPF), in multi-agent systems, is a challenging and meaningful problem, in which all agents are required to effectively reach their goals concurrently with not colliding with each other and avoiding the obstacles. Effective extraction from the agent's observation, effective utilization of historical information, and efficient communication with neighbor agents are the challenges to completing the cooperative task. To tackle these issues, in this paper, we propose a well-designed model, which utilizes the local states of nearby agents and obstacles and outputs an optimal action for each agent to execute. Our approach has three major components: 1) observation encoder which uses CNN to extract local partial observation and GRU to make full use of historical information, 2) communication block which uses attention mechanism to combine the agent's partial observation with its neighbors, and 3) decision block with the purpose to output the final action policy. Based on the three major components, all agents formulate their own decentralized policies to apply. Finally, we use success rate and extra time rate to measure our approach and other well-known algorithms. The results show that our method outperforms the baselines, demonstrating the efficiency and effectiveness of our approach, especially in the case of large scale in the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peter_Zhu完成签到,获得积分10
1秒前
初亦非发布了新的文献求助10
1秒前
gqp完成签到,获得积分10
1秒前
李志明完成签到,获得积分10
1秒前
zzz完成签到 ,获得积分10
2秒前
2秒前
QIU完成签到 ,获得积分10
2秒前
jbear完成签到 ,获得积分10
2秒前
3秒前
biye应助ohh采纳,获得30
3秒前
HAha给HAha的求助进行了留言
3秒前
mmm完成签到 ,获得积分10
3秒前
不安囧完成签到,获得积分10
4秒前
隐形元绿完成签到,获得积分10
4秒前
Akim应助Likyliky采纳,获得10
4秒前
大个应助yiyiji采纳,获得10
4秒前
5秒前
ahmin发布了新的文献求助10
5秒前
林子觽完成签到,获得积分10
6秒前
CC完成签到 ,获得积分20
6秒前
7秒前
zx完成签到,获得积分10
7秒前
7秒前
领导范儿应助经竺采纳,获得10
9秒前
orchid完成签到,获得积分10
9秒前
飞向天空的牛完成签到,获得积分10
9秒前
凯云完成签到,获得积分10
9秒前
任性青烟完成签到,获得积分10
9秒前
10秒前
10秒前
luoxuezhiyin完成签到,获得积分10
10秒前
nihaoxiaoai完成签到,获得积分10
10秒前
nature完成签到,获得积分10
10秒前
logan完成签到,获得积分10
10秒前
11秒前
babyhead完成签到,获得积分10
11秒前
sissi发布了新的文献求助30
11秒前
幽默发卡完成签到,获得积分10
12秒前
pig120完成签到 ,获得积分10
12秒前
幸福冬云应助yao采纳,获得30
12秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835