Attention-Cooperated Reinforcement Learning for Multi-agent Path Planning

计算机科学 强化学习 路径(计算) 人工智能 钢筋 心理学 社会心理学 计算机网络
作者
Jinchao Ma,Defu Lian
出处
期刊:Lecture Notes in Computer Science 卷期号:: 272-290 被引量:1
标识
DOI:10.1007/978-3-031-11217-1_20
摘要

Multi-agent path finding (MAPF), in multi-agent systems, is a challenging and meaningful problem, in which all agents are required to effectively reach their goals concurrently with not colliding with each other and avoiding the obstacles. Effective extraction from the agent's observation, effective utilization of historical information, and efficient communication with neighbor agents are the challenges to completing the cooperative task. To tackle these issues, in this paper, we propose a well-designed model, which utilizes the local states of nearby agents and obstacles and outputs an optimal action for each agent to execute. Our approach has three major components: 1) observation encoder which uses CNN to extract local partial observation and GRU to make full use of historical information, 2) communication block which uses attention mechanism to combine the agent's partial observation with its neighbors, and 3) decision block with the purpose to output the final action policy. Based on the three major components, all agents formulate their own decentralized policies to apply. Finally, we use success rate and extra time rate to measure our approach and other well-known algorithms. The results show that our method outperforms the baselines, demonstrating the efficiency and effectiveness of our approach, especially in the case of large scale in the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssx关闭了ssx文献求助
1秒前
二两白茶完成签到,获得积分10
2秒前
Liu应助轩辕寄风采纳,获得10
6秒前
7秒前
7秒前
10秒前
忘年交发布了新的文献求助10
12秒前
silent完成签到,获得积分10
13秒前
lilian发布了新的文献求助10
15秒前
搜集达人应助Steven采纳,获得10
16秒前
16秒前
16秒前
白白完成签到,获得积分10
18秒前
ChenHan完成签到,获得积分10
20秒前
8R60d8应助轩辕寄风采纳,获得10
21秒前
祭礼之龙发布了新的文献求助10
22秒前
24秒前
26秒前
27秒前
shinysparrow应助SOulemaftg采纳,获得200
28秒前
shinysparrow应助SOulemaftg采纳,获得200
28秒前
29秒前
30秒前
yishu发布了新的文献求助10
30秒前
大模型应助suhua采纳,获得10
31秒前
31秒前
大个应助jixia采纳,获得10
32秒前
foxp3发布了新的文献求助10
33秒前
傲娇的冷卉完成签到,获得积分10
34秒前
34秒前
34秒前
堪冷之完成签到,获得积分10
35秒前
35秒前
36秒前
nnnnn发布了新的文献求助10
36秒前
victory_liu发布了新的文献求助10
38秒前
ABBAAB完成签到,获得积分10
38秒前
38秒前
奶盖呀发布了新的文献求助10
39秒前
ding应助456采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152