生物群落
生态系统
环境科学
气候变化
生态学
植被(病理学)
陆地生态系统
营养循环
生态水文学
生物
医学
病理
作者
José M. Grünzweig,Hans J. De Boeck,Ana Rey,Maria J. Santos,Ori Adam,Michael Bahn,Jayne Belnap,Gaby Deckmyn,Stefan C. Dekker,Omar Flores,Daniel Gliksman,David Helman,Kevin R. Hultine,Lingli Liu,E. Meroni,Yaron Michael,Efrat Sheffer,Heather L. Throop,Omer Tzuk,Dan Yakir
标识
DOI:10.1038/s41559-022-01779-y
摘要
Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as ‘dryland mechanisms’. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth. In drylands, there are unique mechanisms that influence multiple ecosystem processes. In this Perspective, the authors identify these dryland mechanisms and show that they could become more important in non-dryland regions or areas that will become drier in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI