Ultrauniformly Dispersed Cu Nanoparticles Embedded in N-Doped Carbon as a Robust Oxygen Electrocatalyst

电催化剂 纳米颗粒 碳纤维 电解质 化学工程 材料科学 热解 催化作用 电子转移 纳米技术 无机化学 化学 电化学 有机化学 电极 复合数 复合材料 物理化学 工程类
作者
Yifan Huang,Fantao Kong,Han Tian,Fenglai Pei,Yafeng Chen,Ge Meng,Ziwei Chang,Chang Chen,Xiangzhi Cui,Jianlin Shi
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:10 (19): 6370-6381 被引量:24
标识
DOI:10.1021/acssuschemeng.2c01086
摘要

Developing high-efficiency and low-cost nonprecious catalysts for the oxygen reduction reaction (ORR) is important but still challenging. Herein, a N-doped carbon catalyst embedded with uniformly dispersed Cu nanoparticles (∼30 nm) is fabricated by the spatial confinement effect of a nitrogen-rich Salen-based covalent organic framework (Salen-COF), in which Cu(II) ions are anchored onto open chelate sites of Salen-COF and isolated by aromatic rings to form uniformly dispersed Cu nanoparticles embedded in N-doped carbon (Cu NPs/N-C) during pyrolysis. The optimized Cu NPs/N-C-800 exhibits high ORR catalytic activity in both alkaline and acidic electrolytes, especially with an onset potential (Eonset) of 1.02 V and a half-wave potential (E1/2) of 0.88 V in an alkaline electrolyte. Attractively, the Cu NPs/N-C-800-derived Zn–air battery demonstrates a higher peak-power density (163.5 mW cm–2) and long-term cycling stability (118 h). The electronic interaction between the highly concentrated homogeneously dispersed Cu NPs and carbon shell results in an appropriate d-band center, and the porous graphitized carbon shell leads to faster electron transfer and mass transport, which are responsible for the high ORR performance of Cu NPs/N-C-800. This strategy provides a new prospect to synthesize uniformly dispersed metal nanoparticle electrocatalysts with more exposed active sites and efficient catalytic activities for renewable energy conversion devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
承乐应助科研畅行采纳,获得10
3秒前
科研通AI2S应助wei采纳,获得10
4秒前
4秒前
4秒前
小二郎应助小甜采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
研友_屈不愁完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
giao完成签到,获得积分10
7秒前
落后的静曼完成签到,获得积分10
8秒前
好名字发布了新的文献求助10
9秒前
吧唧吧唧发布了新的文献求助10
9秒前
李俊杰发布了新的文献求助30
10秒前
香蕉觅云应助fanatic采纳,获得10
10秒前
10秒前
TIAMO发布了新的文献求助10
10秒前
12秒前
滴滴哒发布了新的文献求助30
12秒前
12秒前
科研通AI6应助月星采纳,获得10
13秒前
14秒前
孟祥飞发布了新的文献求助20
15秒前
科研小白完成签到,获得积分10
15秒前
16秒前
啦啦发布了新的文献求助10
16秒前
jingxu完成签到,获得积分10
16秒前
西行纪完成签到,获得积分10
16秒前
Young完成签到,获得积分10
17秒前
好名字完成签到,获得积分10
17秒前
17秒前
ccc完成签到,获得积分10
18秒前
zero完成签到,获得积分10
18秒前
Ariel发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802