Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: Experiments and theoretical calculations

电解质 锂(药物) 溶剂化 离子电导率 电化学 阳极 电池(电) 电导率 材料科学 电化学窗口 溶剂 冰点 粘度 化学工程 化学 化学物理 热力学 物理化学 有机化学 电极 复合材料 内分泌学 功率(物理) 工程类 物理 医学
作者
Yueda Wang,Hao Zheng,Hong Liu,Fuyang Jiang,Yongchao Liu,Xuyong Feng,Rulong Zhou,Yi Sun,Hongfa Xiang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:445: 136802-136802 被引量:44
标识
DOI:10.1016/j.cej.2022.136802
摘要

Current knowledge and works on high-energy-density Li metal batteries (LMBs) mainly focus on their room-temperature performances. However, the wide-temperature properties of LMBs manifesting greater significance in their large-scale applications are rarely explored. In this work, two LiDFBOP-based multi-salt low-concentration electrolytes (LCEs) are proposed and further explored by experiments and theoretical calculations for wide-temperature LMBs. Molecular dynamics (MD) simulations reveal the weaker attractive interactions between solvent molecules in LCEs, thus resulting in the lower viscosity and freezing point. Specially, the Li+ in representative solvation structures of LCEs possesses accelerated desolvation behavior with low charge-transfer impedance in Li||Li symmetric cells. Furthermore, the thermally stable Li salts in LCEs manifest obvious effect in stabilizing Li metal anode, which contributes to forming a compact solid electrolyte interphase (SEI) layer with good mechanical properties and high ionic conductivity. Ultimately, the Li||LiNi0.7Co0.1Mn0.2O2 battery exhibits extraordinary electrochemical performances over a wide temperature range (−25 °C to 70 °C). This work provides a facile and practical design strategy for the wide-temperature LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福娃完成签到,获得积分10
2秒前
olivia完成签到 ,获得积分10
4秒前
一万朵蝴蝶完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
orixero应助冷艳惜梦采纳,获得10
6秒前
爆米花应助yan采纳,获得10
7秒前
田様应助贤弟采纳,获得10
7秒前
8秒前
jiayouya发布了新的文献求助10
9秒前
眠羊发布了新的文献求助10
10秒前
怕孤单的忆灵关注了科研通微信公众号
10秒前
尹天扬完成签到,获得积分10
10秒前
C22完成签到,获得积分10
11秒前
FashionBoy应助zfihead采纳,获得10
11秒前
11秒前
JG完成签到,获得积分10
11秒前
14秒前
15秒前
王凯完成签到,获得积分10
16秒前
16秒前
huqing发布了新的文献求助60
17秒前
17秒前
ddboys1009发布了新的文献求助10
17秒前
18秒前
C22发布了新的文献求助10
19秒前
王凯发布了新的文献求助10
20秒前
冷艳惜梦发布了新的文献求助10
20秒前
cinnamonbrd发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
25秒前
snow发布了新的文献求助30
25秒前
上官若男应助赶路人采纳,获得10
26秒前
小马甲应助毅诚菌采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851