发光
化学
荧光粉
猝灭(荧光)
激发态
分析化学(期刊)
离子
兴奋剂
电离能
大气温度范围
电离
紫外线
原子物理学
光化学
荧光
光电子学
材料科学
光学
物理
有机化学
色谱法
气象学
作者
Yunlin Yang,Bibo Lou,Yiyi Ou,Fang Su,Chong‐Geng Ma,Chang‐Kui Duan,P. Dorenbos,H. Liang
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2022-05-05
卷期号:61 (19): 7654-7662
被引量:12
标识
DOI:10.1021/acs.inorgchem.2c01016
摘要
Ce3+-doped LiSr4(BO3)3 phosphors have been prepared by a high-temperature solid-state reaction method, and structural refinement of the host compound has been performed. The excitation and emission spectra in the vacuum ultraviolet-ultraviolet-visible range at cryogenic temperatures reveal that Ce3+ ions preferentially occupy eight-coordinated Sr2+ sites in LiSr4(BO3)3. Such experimental attribution is well corroborated by the calculated 4f-5d transition energies and defect formation energies of Ce3+ ions at two distinct Sr2+ sites in the first-principles framework. In addition, the doping concentration-dependent luminescence and the temperature-dependent luminescence are systematically investigated by luminescence intensity and lifetime measurements, respectively. This shows that concentration quenching does not occur in the investigated doping range, but inhomogeneous broadening exists in the concentrated samples. With the estimated thermal quenching activation energy, the discussions on the thermal quenching mechanisms suggest that the thermal-ionization process of the 5d electron is a dominant channel for thermal quenching of Ce3+ luminescence, despite the fact that thermally activated concentration quenching cannot be excluded for the highly doped samples. Finally, the X-ray excited luminescence measurement demonstrates the promising applications of the phosphors in X-ray detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI