已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lung and colon cancer classification using medical imaging: a feature engineering approach

可解释性 人工智能 结直肠癌 肺癌 特征(语言学) 支持向量机 机器学习 深度学习 计算机科学 医学 癌症 模式识别(心理学) 病理 内科学 哲学 语言学
作者
Aya Hage Chehade,Nassib Abdallah,Jean-Marie Marion,Mohamad Oueidat,Pierre Chauvet
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:45 (3): 729-746 被引量:29
标识
DOI:10.1007/s13246-022-01139-x
摘要

Lung and colon cancers lead to a significant portion of deaths. Their simultaneous occurrence is uncommon, however, in the absence of early diagnosis, the metastasis of cancer cells is very high between these two organs. Currently, histopathological diagnosis and appropriate treatment are the only way to improve the chances of survival and reduce cancer mortality. Using artificial intelligence in the histopathological diagnosis of colon and lung cancer can provide significant help to specialists in identifying cases of colon and lung cancers with less effort, time and cost. The objective of this study is to set up a computer-aided diagnostic system that can accurately classify five types of colon and lung tissues (two classes for colon cancer and three classes for lung cancer) by analyzing their histopathological images. Using machine learning, features engineering and image processing techniques, the six models XGBoost, SVM, RF, LDA, MLP and LightGBM were used to perform the classification of histopathological images of lung and colon cancers that were acquired from the LC25000 dataset. The main advantage of using machine learning models is that they allow a better interpretability of the classification model since they are based on feature engineering; however, deep learning models are black box networks whose working is very difficult to understand due to the complex network design. The acquired experimental results show that machine learning models give satisfactory results and are very precise in identifying classes of lung and colon cancer subtypes. The XGBoost model gave the best performance with an accuracy of 99% and a F1-score of 98.8%. The implementation and the development of this model will help healthcare specialists identify types of colon and lung cancers. The code will be available upon request.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜林林完成签到,获得积分10
2秒前
2秒前
AnJaShua完成签到 ,获得积分10
2秒前
3秒前
青糯完成签到 ,获得积分10
3秒前
4秒前
idiom完成签到 ,获得积分10
4秒前
张元东完成签到 ,获得积分10
5秒前
额123没名完成签到 ,获得积分10
5秒前
6秒前
虚心海燕完成签到,获得积分10
6秒前
7秒前
xuli-888完成签到,获得积分10
7秒前
炸鸡完成签到 ,获得积分10
7秒前
Gahye完成签到 ,获得积分10
7秒前
坦率紫烟发布了新的文献求助10
8秒前
Ghiocel完成签到,获得积分10
8秒前
尉迟书兰完成签到 ,获得积分10
8秒前
小号完成签到,获得积分10
8秒前
老庄发布了新的文献求助10
8秒前
喝可乐的萝卜兔完成签到 ,获得积分10
9秒前
于夏旋完成签到,获得积分10
9秒前
真是麻烦完成签到 ,获得积分10
9秒前
tony发布了新的文献求助10
9秒前
哈哈哈完成签到 ,获得积分10
9秒前
成阳发布了新的文献求助10
9秒前
酷波er应助金润采纳,获得10
9秒前
学术霸王完成签到 ,获得积分10
10秒前
欣喜的人龙完成签到 ,获得积分10
11秒前
12秒前
学术垃圾完成签到 ,获得积分10
12秒前
xie完成签到 ,获得积分10
12秒前
优翎完成签到,获得积分10
12秒前
孙成伟完成签到,获得积分10
12秒前
pathway完成签到 ,获得积分10
13秒前
胡一刀完成签到,获得积分10
14秒前
犹豫梦旋完成签到,获得积分10
14秒前
深情安青应助bygone采纳,获得10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566455
求助须知:如何正确求助?哪些是违规求助? 3139157
关于积分的说明 9430760
捐赠科研通 2840013
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778

今日热心研友

爱静静
40
科目三
30
外向的花瓣
20
NicoLi
20
领导范儿
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10