A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images

纳米材料 纳米颗粒 分割 计算机科学 扫描电子显微镜 材料科学 数学形态学 透射电子显微镜 形态学(生物学) 人工智能 纳米技术 图像处理 图像(数学) 复合材料 地质学 古生物学
作者
Zhijian Sun,Jia Shi,Jian Wang,Mingqi Jiang,Zhuo Wang,Xiaoping Bai,Xiaoxiong Wang
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:14 (30): 10761-10772 被引量:33
标识
DOI:10.1039/d2nr01029a
摘要

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are important tools for characterizing nanomaterial morphology. Automatic analysis of the nanomaterial morphology in SEM/TEM images plays a crucial role in accelerating research on nanomaterials science. However, achieving a high-throughput automated online statistical analysis of the nanomaterial morphology in various complex SEM/TEM images is still a challenging task. In this paper, we propose a universal framework based on deep learning to perform a fast and accurate online statistical analysis of the nanoparticle morphology in complex SEM/TEM images. The proposed framework consists of three stages that are nanoparticle segmentation using a powerful light-weight deep learning network (NSNet), nanoparticle shape extraction, and statistical analysis. The experimental results show that NSNet in the proposed framework has achieved an accuracy of 86.2% and can process 11 SEM/TEM images per second on an embedded processor. Compared with other semantic segmentation models, NSNet is an optimal choice to ensure that the proposed framework still achieves accurate and fast segmentation even in SEM/TEM images with high background interference, extremely small nanoparticles and dense nanoparticles. Meanwhile, the equivalent diameter and Blaschke shape coefficient of the nanoparticle obtained by the proposed framework are 17.14 ± 5.9 and 0.18 ± 0.04, which are well consistent with those of manual statistical analysis. In short, the proposed framework has a promising future in driving the development of automatic and intelligent analysis technology for nanomaterial morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc关闭了cc文献求助
刚刚
aa完成签到,获得积分10
1秒前
小彻完成签到,获得积分10
1秒前
1秒前
小茗同学完成签到,获得积分20
2秒前
頑皮燕姿完成签到,获得积分10
2秒前
张静枝发布了新的文献求助10
2秒前
Hector完成签到,获得积分10
2秒前
yoyo发布了新的文献求助10
3秒前
思源应助zzh采纳,获得10
3秒前
小蘑菇应助huodian4采纳,获得10
3秒前
华仔应助Thomas采纳,获得10
3秒前
标致乐双完成签到 ,获得积分10
4秒前
熊大帅完成签到,获得积分10
5秒前
wrf3发布了新的文献求助10
5秒前
anki发布了新的文献求助10
6秒前
6秒前
cjl0413发布了新的文献求助10
7秒前
7秒前
Yule发布了新的文献求助10
8秒前
8秒前
可爱的函函应助yemiao采纳,获得10
9秒前
复杂勒完成签到,获得积分10
9秒前
小小应助YW采纳,获得10
9秒前
9秒前
11秒前
11秒前
wang发布了新的文献求助10
12秒前
orixero应助shadowj1020采纳,获得10
12秒前
白鹭发布了新的文献求助10
12秒前
默默的奇迹完成签到,获得积分20
13秒前
xxfsx应助enen采纳,获得10
13秒前
14秒前
hhh完成签到 ,获得积分10
14秒前
14秒前
小婷发布了新的文献求助10
14秒前
XinG完成签到,获得积分10
15秒前
pcr163应助Unlung采纳,获得200
15秒前
16秒前
anders完成签到 ,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153679
求助须知:如何正确求助?哪些是违规求助? 4349269
关于积分的说明 13541565
捐赠科研通 4191976
什么是DOI,文献DOI怎么找? 2299237
邀请新用户注册赠送积分活动 1299236
关于科研通互助平台的介绍 1244260