A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images

纳米材料 纳米颗粒 分割 计算机科学 扫描电子显微镜 材料科学 数学形态学 透射电子显微镜 形态学(生物学) 人工智能 纳米技术 图像处理 图像(数学) 复合材料 地质学 古生物学
作者
Zhijian Sun,Jia Shi,Jian Wang,Mingqi Jiang,Zhuo Wang,Xiaoping Bai,Xiaoxiong Wang
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (30): 10761-10772 被引量:33
标识
DOI:10.1039/d2nr01029a
摘要

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are important tools for characterizing nanomaterial morphology. Automatic analysis of the nanomaterial morphology in SEM/TEM images plays a crucial role in accelerating research on nanomaterials science. However, achieving a high-throughput automated online statistical analysis of the nanomaterial morphology in various complex SEM/TEM images is still a challenging task. In this paper, we propose a universal framework based on deep learning to perform a fast and accurate online statistical analysis of the nanoparticle morphology in complex SEM/TEM images. The proposed framework consists of three stages that are nanoparticle segmentation using a powerful light-weight deep learning network (NSNet), nanoparticle shape extraction, and statistical analysis. The experimental results show that NSNet in the proposed framework has achieved an accuracy of 86.2% and can process 11 SEM/TEM images per second on an embedded processor. Compared with other semantic segmentation models, NSNet is an optimal choice to ensure that the proposed framework still achieves accurate and fast segmentation even in SEM/TEM images with high background interference, extremely small nanoparticles and dense nanoparticles. Meanwhile, the equivalent diameter and Blaschke shape coefficient of the nanoparticle obtained by the proposed framework are 17.14 ± 5.9 and 0.18 ± 0.04, which are well consistent with those of manual statistical analysis. In short, the proposed framework has a promising future in driving the development of automatic and intelligent analysis technology for nanomaterial morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
511关闭了511文献求助
刚刚
hsm完成签到,获得积分10
刚刚
Sun发布了新的文献求助10
1秒前
我是老大应助sunshine采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
rrrrrrry发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
艾益静发布了新的文献求助10
5秒前
5秒前
紫陌江哥关注了科研通微信公众号
5秒前
Ljynb发布了新的文献求助10
5秒前
6秒前
幼儿园老大完成签到 ,获得积分10
6秒前
笙惗雪完成签到,获得积分10
6秒前
7秒前
小羊闲庭信步完成签到,获得积分10
7秒前
唐刚发布了新的文献求助10
8秒前
宗沛柔完成签到,获得积分10
8秒前
8秒前
8秒前
优雅莞完成签到,获得积分0
8秒前
QiwenZhao完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Bettye发布了新的文献求助200
9秒前
Hello应助爱划水爱摸鱼采纳,获得10
9秒前
9秒前
tleeny发布了新的文献求助10
10秒前
10秒前
Naomi发布了新的文献求助10
10秒前
BowieHuang应助酷炫的平蝶采纳,获得10
10秒前
wzh完成签到,获得积分10
11秒前
白白完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785