Real time volumetric MRI for 3D motion tracking via geometry‐informed deep learning

人工智能 基本事实 计算机视觉 计算机科学 质心 实时核磁共振成像 稳健性(进化) 深度学习 跟踪(教育) 匹配移动 豪斯多夫距离 几何学 数学 运动(物理) 磁共振成像 医学 放射科 化学 基因 生物化学 教育学 心理学
作者
Lianli Liu,Liyue Shen,Adam Johansson,James M. Balter,Yue Cao,Daniel T. Chang,Lei Xing
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 6110-6119 被引量:16
标识
DOI:10.1002/mp.15822
摘要

Abstract Purpose To develop a geometry‐informed deep learning framework for volumetric MRI with sub‐second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time. Methods A 2D–3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k‐space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high‐resolution volumetric images. Patient‐specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model‐reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5‐min time series of both ground truth and model‐reconstructed volumetric images with a temporal resolution of 340 ms. Results Across the seven patients evaluated, the median distances between model‐predicted and ground truth GTV centroids in the superior‐inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95‐percentile Hausdorff distances between model‐predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross‐plane image resolution. Conclusion Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI‐guided radiotherapy precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
爱丽丝敏发布了新的文献求助10
2秒前
2秒前
Hello应助白枫采纳,获得10
2秒前
咎青文发布了新的文献求助10
3秒前
Mike完成签到,获得积分10
3秒前
3秒前
HOLLOW完成签到,获得积分10
3秒前
4秒前
4秒前
100发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助鹅糖采纳,获得10
5秒前
wennuan0913完成签到 ,获得积分10
5秒前
Crh发布了新的文献求助10
5秒前
年轻葶完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小二郎应助中杯西瓜冰采纳,获得10
7秒前
airchinaadmin完成签到,获得积分10
7秒前
bkagyin应助Aqk9采纳,获得10
8秒前
chunyan_sysu发布了新的文献求助10
8秒前
8秒前
C1992003558发布了新的文献求助10
8秒前
cishiwen发布了新的文献求助10
8秒前
9秒前
9秒前
无极微光应助叼得一采纳,获得20
9秒前
谦让的紫烟完成签到,获得积分20
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
xxx完成签到,获得积分10
10秒前
Hilda007应助jelle采纳,获得10
11秒前
12秒前
12秒前
温柔梦松发布了新的文献求助10
12秒前
12秒前
13秒前
爱丽丝敏完成签到,获得积分10
13秒前
FashionBoy应助雨梦迟歌采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244