Real time volumetric MRI for 3D motion tracking via geometry‐informed deep learning

人工智能 基本事实 计算机视觉 计算机科学 质心 实时核磁共振成像 稳健性(进化) 深度学习 跟踪(教育) 匹配移动 豪斯多夫距离 几何学 数学 运动(物理) 磁共振成像 医学 放射科 化学 基因 生物化学 教育学 心理学
作者
Lianli Liu,Liyue Shen,Amanda Johansson,James M. Balter,Yue Cao,Daniel T. Chang,Xing Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 6110-6119 被引量:1
标识
DOI:10.1002/mp.15822
摘要

To develop a geometry-informed deep learning framework for volumetric MRI with sub-second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time.A 2D-3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k-space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high-resolution volumetric images. Patient-specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model-reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5-min time series of both ground truth and model-reconstructed volumetric images with a temporal resolution of 340 ms.Across the seven patients evaluated, the median distances between model-predicted and ground truth GTV centroids in the superior-inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95-percentile Hausdorff distances between model-predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross-plane image resolution.Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI-guided radiotherapy precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐的雨竹完成签到,获得积分10
1秒前
Miss完成签到,获得积分10
1秒前
卖粥的果完成签到,获得积分10
2秒前
wu完成签到,获得积分10
2秒前
3秒前
6秒前
Dr.Tang完成签到 ,获得积分10
8秒前
8秒前
9秒前
zmk完成签到,获得积分10
10秒前
10秒前
单薄纸飞机完成签到,获得积分10
12秒前
zmk发布了新的文献求助10
13秒前
Allen发布了新的文献求助10
18秒前
pluto应助猜猜我是谁采纳,获得10
18秒前
重要白山完成签到 ,获得积分20
24秒前
nanda完成签到,获得积分10
25秒前
恰恰完成签到,获得积分10
25秒前
Li完成签到,获得积分10
26秒前
27秒前
猜猜我是谁完成签到,获得积分10
28秒前
InfoNinja应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得30
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
HR112应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
向日葵发布了新的文献求助10
33秒前
36秒前
wyx2091发布了新的文献求助30
39秒前
恰恰发布了新的文献求助10
40秒前
自信的九娘完成签到,获得积分10
40秒前
41秒前
45秒前
程南完成签到,获得积分10
45秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912856
捐赠科研通 2476071
什么是DOI,文献DOI怎么找? 1318651
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388