亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real time volumetric MRI for 3D motion tracking via geometry‐informed deep learning

人工智能 基本事实 计算机视觉 计算机科学 质心 实时核磁共振成像 稳健性(进化) 深度学习 跟踪(教育) 匹配移动 豪斯多夫距离 几何学 数学 运动(物理) 磁共振成像 医学 放射科 化学 基因 生物化学 教育学 心理学
作者
Lianli Liu,Liyue Shen,Adam Johansson,James M. Balter,Yue Cao,Daniel T. Chang,Lei Xing
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 6110-6119 被引量:16
标识
DOI:10.1002/mp.15822
摘要

Abstract Purpose To develop a geometry‐informed deep learning framework for volumetric MRI with sub‐second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time. Methods A 2D–3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k‐space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high‐resolution volumetric images. Patient‐specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model‐reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5‐min time series of both ground truth and model‐reconstructed volumetric images with a temporal resolution of 340 ms. Results Across the seven patients evaluated, the median distances between model‐predicted and ground truth GTV centroids in the superior‐inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95‐percentile Hausdorff distances between model‐predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross‐plane image resolution. Conclusion Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI‐guided radiotherapy precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于yu完成签到 ,获得积分10
19秒前
40秒前
开心完成签到 ,获得积分10
44秒前
Re发布了新的文献求助10
44秒前
sidashu完成签到,获得积分10
47秒前
无花果应助Re采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
自律发布了新的文献求助10
1分钟前
脑洞疼应助wzy采纳,获得10
2分钟前
比格大王应助clearlove采纳,获得10
2分钟前
2分钟前
wzy发布了新的文献求助10
2分钟前
悟空爱吃酥橙完成签到,获得积分10
2分钟前
2分钟前
自律完成签到,获得积分10
2分钟前
ma121完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
刺1656发布了新的文献求助10
3分钟前
3分钟前
jiangmi完成签到,获得积分10
4分钟前
Sene完成签到,获得积分10
4分钟前
andrele应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
感动初蓝完成签到 ,获得积分10
5分钟前
橘橘橘子皮完成签到 ,获得积分10
5分钟前
5分钟前
蒙恩Maria发布了新的文献求助10
5分钟前
6分钟前
蒙恩Maria完成签到,获得积分10
6分钟前
Pattis完成签到 ,获得积分10
6分钟前
鲸鱼完成签到 ,获得积分10
6分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
我是老大应助科研通管家采纳,获得10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443