已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real time volumetric MRI for 3D motion tracking via geometry‐informed deep learning

人工智能 基本事实 计算机视觉 计算机科学 质心 实时核磁共振成像 稳健性(进化) 深度学习 跟踪(教育) 匹配移动 豪斯多夫距离 几何学 数学 运动(物理) 磁共振成像 医学 放射科 化学 基因 生物化学 教育学 心理学
作者
Lianli Liu,Liyue Shen,Adam Johansson,James M. Balter,Yue Cao,Daniel T. Chang,Lei Xing
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 6110-6119 被引量:10
标识
DOI:10.1002/mp.15822
摘要

Abstract Purpose To develop a geometry‐informed deep learning framework for volumetric MRI with sub‐second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time. Methods A 2D–3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k‐space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high‐resolution volumetric images. Patient‐specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model‐reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5‐min time series of both ground truth and model‐reconstructed volumetric images with a temporal resolution of 340 ms. Results Across the seven patients evaluated, the median distances between model‐predicted and ground truth GTV centroids in the superior‐inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95‐percentile Hausdorff distances between model‐predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross‐plane image resolution. Conclusion Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI‐guided radiotherapy precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贵哥完成签到,获得积分10
3秒前
韩雪霞发布了新的文献求助10
4秒前
Ww完成签到 ,获得积分10
6秒前
Johnason_ZC发布了新的文献求助10
6秒前
sfxnxgu发布了新的文献求助10
6秒前
7秒前
cds完成签到,获得积分20
9秒前
9秒前
NexusExplorer应助李小伟采纳,获得10
9秒前
Ye完成签到,获得积分20
10秒前
隐形曼青应助lune采纳,获得10
11秒前
12秒前
Maryamgvl发布了新的文献求助10
13秒前
13秒前
wenhao完成签到 ,获得积分10
14秒前
SIREN发布了新的文献求助10
14秒前
14秒前
FFF发布了新的文献求助10
14秒前
topsun完成签到,获得积分10
15秒前
wyf完成签到,获得积分20
15秒前
孙意冉发布了新的文献求助10
16秒前
耍酷安蕾完成签到 ,获得积分10
17秒前
21秒前
wang发布了新的文献求助10
22秒前
完美世界应助WZH采纳,获得30
23秒前
西吴完成签到 ,获得积分10
23秒前
Kristine完成签到 ,获得积分10
24秒前
李小伟发布了新的文献求助10
25秒前
冷酷晓夏完成签到,获得积分10
26秒前
小冯完成签到 ,获得积分10
27秒前
开放素完成签到 ,获得积分0
28秒前
深情安青应助独特的追命采纳,获得40
29秒前
1248846完成签到 ,获得积分10
30秒前
lele完成签到,获得积分10
33秒前
Owen应助Ye采纳,获得20
33秒前
adm0616完成签到,获得积分10
34秒前
35秒前
嗨嗨嗨完成签到,获得积分10
36秒前
涵涵涵hh完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063184
求助须知:如何正确求助?哪些是违规求助? 4286873
关于积分的说明 13358002
捐赠科研通 4104880
什么是DOI,文献DOI怎么找? 2247686
邀请新用户注册赠送积分活动 1253213
关于科研通互助平台的介绍 1184234