Real time volumetric MRI for 3D motion tracking via geometry‐informed deep learning

人工智能 基本事实 计算机视觉 计算机科学 质心 实时核磁共振成像 稳健性(进化) 深度学习 跟踪(教育) 匹配移动 豪斯多夫距离 几何学 数学 运动(物理) 磁共振成像 医学 放射科 化学 基因 生物化学 教育学 心理学
作者
Lianli Liu,Liyue Shen,Adam Johansson,James M. Balter,Yue Cao,Daniel T. Chang,Lei Xing
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 6110-6119 被引量:10
标识
DOI:10.1002/mp.15822
摘要

Abstract Purpose To develop a geometry‐informed deep learning framework for volumetric MRI with sub‐second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time. Methods A 2D–3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k‐space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high‐resolution volumetric images. Patient‐specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model‐reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5‐min time series of both ground truth and model‐reconstructed volumetric images with a temporal resolution of 340 ms. Results Across the seven patients evaluated, the median distances between model‐predicted and ground truth GTV centroids in the superior‐inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95‐percentile Hausdorff distances between model‐predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross‐plane image resolution. Conclusion Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI‐guided radiotherapy precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助陈淑玲采纳,获得10
1秒前
FashionBoy应助陈淑玲采纳,获得10
1秒前
海阔光明完成签到,获得积分10
1秒前
空城发布了新的文献求助10
1秒前
诚心小兔子完成签到,获得积分10
1秒前
2秒前
2秒前
小香草完成签到,获得积分10
2秒前
3秒前
晨雾锁阳完成签到 ,获得积分10
3秒前
phil完成签到,获得积分10
3秒前
ycp完成签到,获得积分10
3秒前
FloppyWow完成签到 ,获得积分10
4秒前
gzsy完成签到,获得积分10
4秒前
叶赛文完成签到,获得积分10
4秒前
5秒前
玄笺发布了新的文献求助10
5秒前
Pothos发布了新的文献求助30
6秒前
lilac完成签到,获得积分10
7秒前
碧蓝莫言完成签到 ,获得积分10
7秒前
专注完成签到,获得积分10
8秒前
犬狗狗完成签到 ,获得积分10
8秒前
小贝壳要快乐吖完成签到,获得积分10
8秒前
9秒前
靓丽的熠彤完成签到,获得积分10
9秒前
伊戈达拉一个大拉完成签到 ,获得积分10
10秒前
小破网完成签到 ,获得积分0
11秒前
科研F5完成签到,获得积分10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
Gilana完成签到,获得积分10
13秒前
czcz完成签到,获得积分10
14秒前
二傻发布了新的文献求助10
14秒前
迷你的百川完成签到,获得积分10
15秒前
15秒前
15秒前
虚幻的凤完成签到,获得积分10
15秒前
fengyi2999完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259