Joint Localization and Classification of Breast Cancer in B-Mode Ultrasound Imaging via Collaborative Learning With Elastography

卷积神经网络 计算机科学 人工智能 杠杆(统计) 深度学习 弹性成像 模式识别(心理学) 上下文图像分类 残差神经网络 超声波 放射科 医学 图像(数学)
作者
Weichang Ding,Jun Wang,Weijun Zhou,Shichong Zhou,Cai Chang,Jun Shi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (9): 4474-4485 被引量:11
标识
DOI:10.1109/jbhi.2022.3186933
摘要

Convolutional neural networks (CNNs) have been successfully applied in the computer-aided ultrasound diagnosis for breast cancer. Up to now, several CNN-based methods have been proposed. However, most of them consider tumor localization and classification as two separate steps, rather than performing them simultaneously. Besides, they suffer from the limited diagnosis information in the B-mode ultrasound (BUS) images. In this study, we develop a novel network ResNet-GAP that incorporates both localization and classification into a unified procedure. To enhance the performance of ResNet-GAP, we leverage stiffness information in the elastography ultrasound (EUS) modality by collaborative learning in the training stage. Specifically, a dual-channel ResNet-GAP network is developed, one channel for BUS and the other for EUS. In each channel, multiple class activity maps (CAMs) are generated using a series of convolutional kernels of different sizes. The multi-scale consistency of the CAMs in both channels are further considered in network optimization. Experiments on 264 patients in this study show that the newly developed ResNet-GAP achieves an accuracy of 88.6%, a sensitivity of 95.3%, a specificity of 84.6%, and an AUC of 93.6% on the classification task, and a 1.0NLF of 87.9% on the localization task, which is better than some state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分20
刚刚
研友_LOoomL发布了新的文献求助10
2秒前
要减肥世德完成签到 ,获得积分10
3秒前
3秒前
orixero应助波安班采纳,获得10
4秒前
知足且上进完成签到,获得积分10
6秒前
卡卡光波完成签到,获得积分10
8秒前
害羞的书芹完成签到,获得积分10
9秒前
9秒前
XXX发布了新的文献求助10
9秒前
大模型应助背后海莲采纳,获得10
11秒前
12秒前
李帅完成签到,获得积分10
12秒前
天马行空完成签到,获得积分10
12秒前
Jin发布了新的文献求助10
13秒前
高点点完成签到 ,获得积分10
13秒前
15秒前
威武忆山完成签到 ,获得积分10
15秒前
17秒前
研友_LOoomL发布了新的文献求助10
17秒前
善良的汉堡完成签到 ,获得积分10
17秒前
ccc关注了科研通微信公众号
17秒前
刘一完成签到 ,获得积分10
17秒前
ZORROR完成签到,获得积分10
18秒前
Jin完成签到,获得积分10
19秒前
甜甜的问芙完成签到 ,获得积分10
19秒前
机灵的煎蛋完成签到 ,获得积分10
20秒前
婷婷完成签到 ,获得积分10
20秒前
上官若男应助resonliu0827采纳,获得10
20秒前
小二郎应助牙牙采纳,获得10
21秒前
aklx发布了新的文献求助12
22秒前
深情安青应助发量巨人采纳,获得10
22秒前
23秒前
威武鹤轩完成签到 ,获得积分10
24秒前
耶啵8825完成签到,获得积分10
26秒前
26秒前
27秒前
美好沛萍发布了新的文献求助10
28秒前
小不溜完成签到 ,获得积分10
28秒前
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268976
求助须知:如何正确求助?哪些是违规求助? 2908483
关于积分的说明 8345844
捐赠科研通 2578717
什么是DOI,文献DOI怎么找? 1402391
科研通“疑难数据库(出版商)”最低求助积分说明 655414
邀请新用户注册赠送积分活动 634562