亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Named Entity Recognition from Construction Safety Regulations for Automated Field Compliance Checking

计算机科学 领域(数学) 卷积神经网络 事故报告 深度学习 可扩展性 信息抽取 人工智能 计算机安全 机器学习 数据库 数学 纯数学
作者
Xiyu Wang,Nora El-Gohary
出处
期刊:Computing in Civil Engineering 卷期号:: 164-171 被引量:3
标识
DOI:10.1061/9780784483893.021
摘要

Automated safety compliance checking aims to detect field violations to construction safety regulations. Recent research and system development efforts have made good progress on automated tracking of labor and equipment towards improved violation detection and safety compliance. However, extracting and modeling safety requirements for supporting automated violation detection or safety alert systems remains highly manual. Towards addressing this gap, information extraction provides an opportunity to automatically extract safety requirements from regulatory documents for comparisons with field information to detect violations. However, existing information extraction methods fall short in their scalability and/or accuracy. To address this need, this paper proposes a deep learning-based information extraction method for extracting entities that describe fall protection requirements from construction safety regulations for supporting automated field compliance checking. The proposed method uses a hybrid bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN) model for recognizing the entities. The proposed method was implemented and tested on four selected Occupational Safety and Health Administration (OSHA) sections related to fall protection. It has achieved an average precision, recall, and F-1 measure of 81.5%, 80.3%, and 80.9%, respectively, which indicates good named entity recognition performance. The paper discusses the proposed method and experimental results, and outlines directions for further performance improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
26秒前
28秒前
hermaphrodite发布了新的文献求助10
32秒前
33秒前
谢大大发布了新的文献求助10
35秒前
彭于晏应助科研痛采纳,获得10
46秒前
陈塘关守将完成签到,获得积分10
48秒前
仁爱的访枫完成签到 ,获得积分10
49秒前
52秒前
1分钟前
1分钟前
1分钟前
orixero应助想游泳的鹰采纳,获得10
1分钟前
苹果王子6699完成签到 ,获得积分10
2分钟前
JamesPei应助suzy-123采纳,获得10
2分钟前
平淡的中心完成签到,获得积分10
2分钟前
xx发布了新的文献求助10
2分钟前
2分钟前
bjbmtxy应助xx采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
比目鱼发布了新的文献求助10
2分钟前
黑大侠完成签到 ,获得积分10
2分钟前
Tanyang应助Eris采纳,获得20
3分钟前
比目鱼完成签到,获得积分10
3分钟前
3分钟前
科研通AI5应助年轻的冰海采纳,获得10
3分钟前
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
3分钟前
Jiro完成签到,获得积分10
3分钟前
谢大大完成签到 ,获得积分10
3分钟前
d22110652完成签到,获得积分10
3分钟前
3分钟前
3分钟前
d22110652发布了新的文献求助10
4分钟前
大模型应助酆冷安采纳,获得10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477431
求助须知:如何正确求助?哪些是违规求助? 3068919
关于积分的说明 9110058
捐赠科研通 2760353
什么是DOI,文献DOI怎么找? 1514849
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604