亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning

线性判别分析 人工智能 高光谱成像 支持向量机 模式识别(心理学) 波长 数学 化学 计算机科学 生物系统 物理 光学 生物
作者
Fujia Dong,Jie Hao,Ruiming Luo,Zhifeng Zhang,Songlei Wang,Kangning Wu,Бо Лю
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107027-107027 被引量:39
标识
DOI:10.1016/j.compag.2022.107027
摘要

In this study, two-dimensional correlation spectroscopy (2D-COS) of near-infrared hyperspectral images combined with convolutional neural networks (CNN) was developed to identify the origin of wolfberries for the first time. 2D-COS was adopted to identify characteristic wavelengths and resolve the change orders of corresponding chemical bonds. Competitive adaptive reweighed sampling (CARS), iteratively retaining information variables (IRIV) and interval variable iterative space shrinking analysis (iVISSA) methods were used to select characteristic wavelengths. Linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and CNN classification models of the original spectra and characteristic wavelengths were established. Wolfberry texture information was extracted by the grey-level co-occurrence matrix (GLCM) method, and fused with optimal characteristic wavelengths to optimize the identification results of the models. The results showed that the sequence of changes in the correlation spectra caused by fluctuation in geographical origins in sequence was 1556 nm, 1437 nm, 1058 nm, 1368 nm. The stretching vibration of the NH bonds and CN bonds (1556 nm) in the amide II bands preceded the bending vibration of the NH bonds and CN bonds (1437 nm) in the amide III bands. Stretching vibration of the COH bonds (1058 nm) preceded double-frequency absorption bands of the CH bonds (1368 nm). For the original spectral dataset, the 2D-COS-CNN model performed the best, with the calibration set and prediction set accuracies of 100% and 95.29%, respectively. For the characteristic wavelength dataset, the 2D-COS-iVISSA-CNN model exhibited the best accuracy, with the calibration set and prediction set accuracies of 100% and 96.67%, respectively. Using the optimized fusion dataset, the CNN discrimination model showed the best results, with the calibration and prediction set accuracies of 100% and 97.71%, respectively. 2D-COS combined with deep learning algorithm can effectively distinguish the origin of wolfberries and provide crucial technical support for the development of wolfberry industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANGLan完成签到,获得积分10
1秒前
阿尼亚发布了新的文献求助10
2秒前
4秒前
5秒前
快乐的C发布了新的文献求助10
7秒前
fpbovo发布了新的文献求助10
11秒前
周晴完成签到 ,获得积分10
12秒前
楠楠2001完成签到 ,获得积分10
13秒前
15秒前
lazysheep完成签到,获得积分10
25秒前
fox2shj完成签到,获得积分10
25秒前
30秒前
31秒前
阿恺发布了新的文献求助10
35秒前
思源应助DarrenVan采纳,获得10
41秒前
希望天下0贩的0应助阿恺采纳,获得10
45秒前
霸气的亿先完成签到 ,获得积分10
46秒前
阿尼亚发布了新的文献求助10
51秒前
。。。完成签到 ,获得积分10
52秒前
1分钟前
俊逸尔风完成签到 ,获得积分10
1分钟前
缓慢的凝云完成签到,获得积分10
1分钟前
研友_8y2o0L发布了新的文献求助10
1分钟前
机智的小羊尾完成签到 ,获得积分10
1分钟前
研友_8y2o0L完成签到,获得积分10
1分钟前
Owen应助伴霞采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
桐桐应助研友_LMBPXn采纳,获得30
1分钟前
gy完成签到,获得积分10
1分钟前
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
清风浮云完成签到,获得积分10
1分钟前
1分钟前
无畏完成签到 ,获得积分10
1分钟前
1分钟前
科研土人发布了新的文献求助10
1分钟前
若尘完成签到 ,获得积分10
1分钟前
DarrenVan发布了新的文献求助10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139490
求助须知:如何正确求助?哪些是违规求助? 2790349
关于积分的说明 7795082
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301448
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146