Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning

线性判别分析 人工智能 高光谱成像 支持向量机 模式识别(心理学) 波长 数学 化学 计算机科学 生物系统 物理 光学 生物
作者
Fujia Dong,Jie Hao,Ruiming Luo,Zhifeng Zhang,Songlei Wang,Kangning Wu,Mengqi Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107027-107027 被引量:52
标识
DOI:10.1016/j.compag.2022.107027
摘要

In this study, two-dimensional correlation spectroscopy (2D-COS) of near-infrared hyperspectral images combined with convolutional neural networks (CNN) was developed to identify the origin of wolfberries for the first time. 2D-COS was adopted to identify characteristic wavelengths and resolve the change orders of corresponding chemical bonds. Competitive adaptive reweighed sampling (CARS), iteratively retaining information variables (IRIV) and interval variable iterative space shrinking analysis (iVISSA) methods were used to select characteristic wavelengths. Linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and CNN classification models of the original spectra and characteristic wavelengths were established. Wolfberry texture information was extracted by the grey-level co-occurrence matrix (GLCM) method, and fused with optimal characteristic wavelengths to optimize the identification results of the models. The results showed that the sequence of changes in the correlation spectra caused by fluctuation in geographical origins in sequence was 1556 nm, 1437 nm, 1058 nm, 1368 nm. The stretching vibration of the NH bonds and CN bonds (1556 nm) in the amide II bands preceded the bending vibration of the NH bonds and CN bonds (1437 nm) in the amide III bands. Stretching vibration of the COH bonds (1058 nm) preceded double-frequency absorption bands of the CH bonds (1368 nm). For the original spectral dataset, the 2D-COS-CNN model performed the best, with the calibration set and prediction set accuracies of 100% and 95.29%, respectively. For the characteristic wavelength dataset, the 2D-COS-iVISSA-CNN model exhibited the best accuracy, with the calibration set and prediction set accuracies of 100% and 96.67%, respectively. Using the optimized fusion dataset, the CNN discrimination model showed the best results, with the calibration and prediction set accuracies of 100% and 97.71%, respectively. 2D-COS combined with deep learning algorithm can effectively distinguish the origin of wolfberries and provide crucial technical support for the development of wolfberry industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助好学的猪采纳,获得10
1秒前
秘小先儿完成签到,获得积分10
1秒前
阳光无声完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
王浩宇关注了科研通微信公众号
3秒前
4秒前
zihanwang应助酷酷海豚采纳,获得10
4秒前
科研狗完成签到,获得积分10
4秒前
5秒前
腾桑发布了新的文献求助10
5秒前
lin完成签到,获得积分20
6秒前
李某某完成签到,获得积分10
6秒前
书亚发布了新的文献求助10
7秒前
东东呀发布了新的文献求助10
8秒前
8秒前
9秒前
Ammon发布了新的文献求助10
10秒前
Www发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
每㐬山风关注了科研通微信公众号
14秒前
WHHW完成签到,获得积分10
14秒前
西西里柠檬发布了新的文献求助100
14秒前
英姑应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
DijiaXu应助科研通管家采纳,获得30
15秒前
彭于彦祖应助科研通管家采纳,获得30
15秒前
今后应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
Ren应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得20
16秒前
Ammon完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070