亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning

线性判别分析 人工智能 高光谱成像 支持向量机 模式识别(心理学) 波长 数学 化学 计算机科学 生物系统 物理 光学 生物
作者
Fujia Dong,Jie Hao,Ruiming Luo,Zhifeng Zhang,Songlei Wang,Kangning Wu,Mengqi Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107027-107027 被引量:65
标识
DOI:10.1016/j.compag.2022.107027
摘要

In this study, two-dimensional correlation spectroscopy (2D-COS) of near-infrared hyperspectral images combined with convolutional neural networks (CNN) was developed to identify the origin of wolfberries for the first time. 2D-COS was adopted to identify characteristic wavelengths and resolve the change orders of corresponding chemical bonds. Competitive adaptive reweighed sampling (CARS), iteratively retaining information variables (IRIV) and interval variable iterative space shrinking analysis (iVISSA) methods were used to select characteristic wavelengths. Linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and CNN classification models of the original spectra and characteristic wavelengths were established. Wolfberry texture information was extracted by the grey-level co-occurrence matrix (GLCM) method, and fused with optimal characteristic wavelengths to optimize the identification results of the models. The results showed that the sequence of changes in the correlation spectra caused by fluctuation in geographical origins in sequence was 1556 nm, 1437 nm, 1058 nm, 1368 nm. The stretching vibration of the NH bonds and CN bonds (1556 nm) in the amide II bands preceded the bending vibration of the NH bonds and CN bonds (1437 nm) in the amide III bands. Stretching vibration of the COH bonds (1058 nm) preceded double-frequency absorption bands of the CH bonds (1368 nm). For the original spectral dataset, the 2D-COS-CNN model performed the best, with the calibration set and prediction set accuracies of 100% and 95.29%, respectively. For the characteristic wavelength dataset, the 2D-COS-iVISSA-CNN model exhibited the best accuracy, with the calibration set and prediction set accuracies of 100% and 96.67%, respectively. Using the optimized fusion dataset, the CNN discrimination model showed the best results, with the calibration and prediction set accuracies of 100% and 97.71%, respectively. 2D-COS combined with deep learning algorithm can effectively distinguish the origin of wolfberries and provide crucial technical support for the development of wolfberry industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助karstbing采纳,获得30
4秒前
wanci应助科研通管家采纳,获得10
10秒前
MchemG应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
26秒前
43秒前
haha完成签到 ,获得积分10
44秒前
梦玲完成签到 ,获得积分10
50秒前
郑雅柔完成签到 ,获得积分10
58秒前
58秒前
奋进的熊发布了新的文献求助10
1分钟前
1分钟前
奋进的熊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
昭昭发布了新的文献求助20
1分钟前
1分钟前
CodeCraft应助zy采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
善学以致用应助语音助手采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
zy发布了新的文献求助10
2分钟前
Lemonnnnnn_完成签到 ,获得积分10
2分钟前
2分钟前
传奇3应助小树同学采纳,获得10
2分钟前
2分钟前
ginaaaaa发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Criminology34举报李李求助涉嫌违规
3分钟前
CodeCraft应助sfwrbh采纳,获得10
3分钟前
Nebulon完成签到,获得积分20
3分钟前
ginaaaaa发布了新的文献求助10
3分钟前
pluto应助郑雅柔采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818167
捐赠科研通 4651975
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469764