材料科学
工作(物理)
铁电性
化学物理
Crystal(编程语言)
纳米技术
光电子学
化学
计算机科学
热力学
物理
电介质
程序设计语言
作者
Durga Prasad Karothu,Rodrigo Cezar de Campos Ferreira,Ghada Dushaq,Ejaz Ahmed,Luca Catalano,Jad Mahmoud Halabi,Zainab Alhaddad,Ibrahim Tahir,Liang Li,Sharmarke Mohamed,Mahmoud Rasras,Panče Naumov
标识
DOI:10.1038/s41467-022-30541-y
摘要
Dynamic organic crystals are rapidly gaining traction as a new class of smart materials for energy conversion, however, they are only capable of very small strokes (<12%) and most of them operate through energetically cost-prohibitive processes at high temperatures. We report on the exceptional performance of an organic actuating material with exceedingly large stroke that can reversibly convert energy into work around room temperature. When transitioning at 295-305 K on heating and at 265-275 K on cooling the ferroelectric crystals of guanidinium nitrate exert a linear stroke of 51%, the highest value observed with a reversible operation of an organic single crystal actuator. Their maximum force density is higher than electric cylinders, ceramic piezoactuators, and electrostatic actuators, and their work capacity is close to that of thermal actuators. This work demonstrates the hitherto untapped potential of ionic organic crystals for applications such as light-weight capacitors, dielectrics, ferroelectric tunnel junctions, and thermistors.
科研通智能强力驱动
Strongly Powered by AbleSci AI