Spectral variational mode extraction and its application in fault detection of rolling bearing

包络线(雷达) 算法 断层(地质) 希尔伯特-黄变换 边界(拓扑) 数学 计算机科学 控制理论(社会学) 人工智能 数学分析 能量(信号处理) 控制(管理) 雷达 地震学 地质学 统计 电信
作者
Bin Pang,Heng Zhang,Tianshi Cheng,Zhenduo Sun,Yan Shi,Guiji Tang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (1): 449-471 被引量:8
标识
DOI:10.1177/14759217221098670
摘要

The core of fault diagnosis of rolling bearing is to extract the narrowband sub-components containing fault feature information from the bearing fault signal. Variational mode extraction (VME), a novel single sub-component separation algorithm originated from variational mode decomposition (VMD), provides a promising solution to bearing fault detection. However, its performance is closely related to the hyperparameter selection, including the center frequency ω d and the penalty factor α. This paper proposes a non-recursive and adaptive signal decomposition algorithm termed spectral variational mode extraction (SVME). SVME can be seen as a spectral decomposition technique whose framework is composed of the adaptive spectral boundary division and boundary constrained VME. In the adaptive spectral boundary division, an adaptive iterative spectral envelope method referring to the continuous envelope correlation (CCE) index is developed to integrate with the parameterless scale-space division to adaptively locate the frequency band boundary. The presented adaptive spectral boundary division approach can effectively inhibit the spectral boundary over-division. In the boundary constrained VME, the dominant frequency of each frequency band determined by the optimal spectral division is distinguished as the preset center frequency. Meanwhile, the optimal penalty factor is determined based on the envelope spectral kurtosis (ESK) index and the boundary-constraint principle. The SVME method is utilized in the simulation and experimental case studies to investigate its capability. Furthermore, its superiority is highlighted through the comparison with the variational mode decomposition (VMD) and Autogram methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助安详怀蕾采纳,获得10
1秒前
司徒诗蕾发布了新的文献求助10
1秒前
2秒前
J11发布了新的文献求助10
2秒前
设计狂魔完成签到,获得积分10
3秒前
无花果应助WSDSG采纳,获得10
6秒前
酷波er应助沉静的八宝粥采纳,获得10
6秒前
7秒前
9秒前
00000完成签到,获得积分10
10秒前
自然妙竹完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
斯文败类应助sudaxia100采纳,获得10
16秒前
AhhHuang完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
Ava应助悦耳傲儿采纳,获得10
17秒前
ChenXY完成签到,获得积分10
20秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助10
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
严笑容发布了新的文献求助30
21秒前
孙波完成签到,获得积分10
22秒前
二猫发布了新的文献求助10
22秒前
23秒前
好运连连完成签到 ,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792