已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VQAMix: Conditional Triplet Mixup for Medical Visual Question Answering

答疑 计算机科学 人工智能 情报检索 自然语言处理
作者
Haifan Gong,Guanqi Chen,Mingzhi Mao,Zhen Li,Guanbin Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3332-3343 被引量:33
标识
DOI:10.1109/tmi.2022.3185008
摘要

Medical visual question answering (VQA) aims to correctly answer a clinical question related to a given medical image. Nevertheless, owing to the expensive manual annotations of medical data, the lack of labeled data limits the development of medical VQA. In this paper, we propose a simple yet effective data augmentation method, VQAMix, to mitigate the data limitation problem. Specifically, VQAMix generates more labeled training samples by linearly combining a pair of VQA samples, which can be easily embedded into any visual-language model to boost performance. However, mixing two VQA samples would construct new connections between images and questions from different samples, which will cause the answers for those new fabricated image-question pairs to be missing or meaningless. To solve the missing answer problem, we first develop the Learning with Missing Labels (LML) strategy, which roughly excludes the missing answers. To alleviate the meaningless answer issue, we design the Learning with Conditional-mixed Labels (LCL) strategy, which further utilizes language-type prior to forcing the mixed pairs to have reasonable answers that belong to the same category. Experimental results on the VQA-RAD and PathVQA benchmarks show that our proposed method significantly improves the performance of the baseline by about 7% and 5% on the averaging result of two backbones, respectively. More importantly, VQAMix could improve confidence calibration and model interpretability, which is significant for medical VQA models in practical applications. All code and models are available at https://github.com/haifangong/VQAMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
dkjg完成签到 ,获得积分10
6秒前
8秒前
li完成签到,获得积分10
8秒前
想飞的小猴子完成签到,获得积分10
9秒前
yziy发布了新的文献求助10
9秒前
嘿嘿呼完成签到,获得积分20
11秒前
今后应助陆旻采纳,获得10
11秒前
11秒前
ww完成签到,获得积分20
12秒前
theo完成签到,获得积分10
13秒前
小小鹅发布了新的文献求助10
13秒前
movoandy发布了新的文献求助10
13秒前
科研通AI6应助wt采纳,获得10
14秒前
15秒前
燕尔蓝发布了新的文献求助10
15秒前
15秒前
渔渔完成签到 ,获得积分10
16秒前
17秒前
嘛吉发布了新的文献求助10
19秒前
活泼的若血完成签到 ,获得积分10
21秒前
学术小白w完成签到,获得积分10
22秒前
tangtang关注了科研通微信公众号
22秒前
23秒前
科研通AI6应助凶狠的源智采纳,获得10
24秒前
26秒前
传奇3应助hygge采纳,获得10
28秒前
28秒前
29秒前
29秒前
caoyonggang发布了新的文献求助10
30秒前
馆长给开心的访卉的求助进行了留言
30秒前
puppy发布了新的文献求助10
32秒前
科研通AI6应助嘛吉采纳,获得10
34秒前
34秒前
科研通AI6应助优雅的帅哥采纳,获得10
34秒前
小小牛马完成签到 ,获得积分10
36秒前
36秒前
37秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522