VQAMix: Conditional Triplet Mixup for Medical Visual Question Answering

答疑 计算机科学 人工智能 情报检索 自然语言处理
作者
Haifan Gong,Guanqi Chen,Mingzhi Mao,Zhen Li,Guanbin Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3332-3343 被引量:33
标识
DOI:10.1109/tmi.2022.3185008
摘要

Medical visual question answering (VQA) aims to correctly answer a clinical question related to a given medical image. Nevertheless, owing to the expensive manual annotations of medical data, the lack of labeled data limits the development of medical VQA. In this paper, we propose a simple yet effective data augmentation method, VQAMix, to mitigate the data limitation problem. Specifically, VQAMix generates more labeled training samples by linearly combining a pair of VQA samples, which can be easily embedded into any visual-language model to boost performance. However, mixing two VQA samples would construct new connections between images and questions from different samples, which will cause the answers for those new fabricated image-question pairs to be missing or meaningless. To solve the missing answer problem, we first develop the Learning with Missing Labels (LML) strategy, which roughly excludes the missing answers. To alleviate the meaningless answer issue, we design the Learning with Conditional-mixed Labels (LCL) strategy, which further utilizes language-type prior to forcing the mixed pairs to have reasonable answers that belong to the same category. Experimental results on the VQA-RAD and PathVQA benchmarks show that our proposed method significantly improves the performance of the baseline by about 7% and 5% on the averaging result of two backbones, respectively. More importantly, VQAMix could improve confidence calibration and model interpretability, which is significant for medical VQA models in practical applications. All code and models are available at https://github.com/haifangong/VQAMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
falling_learning完成签到 ,获得积分10
刚刚
zz发布了新的文献求助10
刚刚
1秒前
1秒前
雪梅完成签到 ,获得积分10
2秒前
3秒前
Shawna完成签到,获得积分10
3秒前
坦呐完成签到,获得积分20
3秒前
dreamvssnow完成签到 ,获得积分10
4秒前
QixuGuo发布了新的文献求助10
4秒前
古风欧完成签到,获得积分10
4秒前
公子渔发布了新的文献求助10
4秒前
5秒前
Hello应助哈哈哈哈哈哈采纳,获得10
5秒前
ZZZZZZZZF应助摸鱼咯采纳,获得10
6秒前
wanci应助fjh采纳,获得10
7秒前
7秒前
小蘑菇应助木犀板板采纳,获得10
8秒前
范莉完成签到,获得积分10
9秒前
Ha放狗小Pi完成签到,获得积分10
10秒前
听懂的同学标个6完成签到,获得积分10
10秒前
自信的德天完成签到,获得积分10
12秒前
LiZH完成签到,获得积分10
12秒前
Xianao发布了新的文献求助10
13秒前
miuwu发布了新的文献求助10
15秒前
单莫人完成签到,获得积分10
17秒前
希望天下0贩的0应助Hans采纳,获得10
17秒前
张祖成完成签到,获得积分10
20秒前
清新的问枫完成签到,获得积分10
20秒前
20秒前
20秒前
wahaha完成签到,获得积分10
21秒前
勤奋的大米完成签到,获得积分10
22秒前
Ava应助听懂的同学标个6采纳,获得10
22秒前
24秒前
24秒前
后会无期完成签到,获得积分10
24秒前
yuanying发布了新的文献求助10
28秒前
又欠发布了新的文献求助10
28秒前
ZD发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289246
求助须知:如何正确求助?哪些是违规求助? 4440938
关于积分的说明 13825965
捐赠科研通 4323204
什么是DOI,文献DOI怎么找? 2373053
邀请新用户注册赠送积分活动 1368481
关于科研通互助平台的介绍 1332391