VQAMix: Conditional Triplet Mixup for Medical Visual Question Answering

答疑 计算机科学 人工智能 情报检索 自然语言处理
作者
Haifan Gong,Guanqi Chen,Mingzhi Mao,Zhen Li,Guanbin Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3332-3343 被引量:33
标识
DOI:10.1109/tmi.2022.3185008
摘要

Medical visual question answering (VQA) aims to correctly answer a clinical question related to a given medical image. Nevertheless, owing to the expensive manual annotations of medical data, the lack of labeled data limits the development of medical VQA. In this paper, we propose a simple yet effective data augmentation method, VQAMix, to mitigate the data limitation problem. Specifically, VQAMix generates more labeled training samples by linearly combining a pair of VQA samples, which can be easily embedded into any visual-language model to boost performance. However, mixing two VQA samples would construct new connections between images and questions from different samples, which will cause the answers for those new fabricated image-question pairs to be missing or meaningless. To solve the missing answer problem, we first develop the Learning with Missing Labels (LML) strategy, which roughly excludes the missing answers. To alleviate the meaningless answer issue, we design the Learning with Conditional-mixed Labels (LCL) strategy, which further utilizes language-type prior to forcing the mixed pairs to have reasonable answers that belong to the same category. Experimental results on the VQA-RAD and PathVQA benchmarks show that our proposed method significantly improves the performance of the baseline by about 7% and 5% on the averaging result of two backbones, respectively. More importantly, VQAMix could improve confidence calibration and model interpretability, which is significant for medical VQA models in practical applications. All code and models are available at https://github.com/haifangong/VQAMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧笙踏歌应助Zzz采纳,获得10
1秒前
今后应助Zzz采纳,获得10
1秒前
时尚的世立完成签到,获得积分10
1秒前
丘比特应助洁净的钢笔采纳,获得10
1秒前
Chelry发布了新的文献求助10
2秒前
phoebe发布了新的文献求助10
3秒前
xy完成签到,获得积分10
4秒前
YJL发布了新的文献求助20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Nikola完成签到 ,获得积分10
6秒前
科研通AI2S应助阿敬采纳,获得10
8秒前
刘凯旋完成签到,获得积分10
9秒前
Akane发布了新的文献求助10
11秒前
12秒前
Yeiiiiii完成签到,获得积分10
12秒前
阳光衣完成签到,获得积分10
13秒前
13秒前
me发布了新的文献求助10
15秒前
Syk_完成签到,获得积分10
16秒前
默默安双发布了新的文献求助10
17秒前
19秒前
21秒前
千跃应助韩jl采纳,获得20
22秒前
酷波er应助jj采纳,获得10
22秒前
眯眯眼的衬衫应助阿敬采纳,获得10
23秒前
23秒前
英俊的铭应助Gulu_采纳,获得10
24秒前
孙曜儿给孙曜儿的求助进行了留言
24秒前
烟花应助ahxb采纳,获得10
25秒前
徐赞美完成签到,获得积分10
26秒前
深情安青应助xlx采纳,获得30
26秒前
27秒前
29秒前
Xiaojiu发布了新的文献求助10
30秒前
30秒前
31秒前
linkman发布了新的文献求助10
32秒前
33秒前
一只小鬼Q完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565