亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for image colorization: Current and future prospects

计算机科学 深度学习 水准点(测量) 人工智能 透视图(图形) 图像(数学) 数据科学 机器学习 开放式研究 图像处理 大数据 上下文图像分类 计算机视觉 人工神经网络 可视化 深层神经网络
作者
Shanshan Huang,Xin Jin,Qian Jiang,Li Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105006-105006 被引量:69
标识
DOI:10.1016/j.engappai.2022.105006
摘要

Image colorization, as an essential problem in computer vision (CV), has attracted an increasing amount of researchers attention in recent years, especially deep learning-based image colorization techniques(DLIC). Generally, most recent image colorization methods can be regarded as knowledge-based systems because they are usually trained by big datasets. Unlike the existing reviews, this paper adopts a unique deep learning-based perspective to review the latest progress in image colorization techniques systematically and comprehensively. In this paper, a comprehensive review of recent DLIC approaches from algorithm classification to existing challenges is provided to facilitate researchers’ in-depth understanding of DLIC. In particular, we review DLIC algorithms from various perspectives, including color space, network structure, loss function, level of automation, and application fields. Furthermore, other important issues are discussed, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we discuss several open issues of image colorization and outline future research directions. This survey can serve as a reference for researchers in image colorization and related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
16秒前
ClarkClarkson完成签到,获得积分10
16秒前
19秒前
qiaorankongling完成签到 ,获得积分10
22秒前
29秒前
36秒前
火之高兴发布了新的文献求助20
42秒前
45秒前
Dr发布了新的文献求助10
50秒前
Orange应助Dr采纳,获得10
56秒前
Dr完成签到,获得积分10
1分钟前
ZYP应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ZYP应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
脑洞疼应助阿萨卡先生采纳,获得10
2分钟前
2分钟前
Cherry完成签到 ,获得积分10
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
3分钟前
领导范儿应助wyx采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
4分钟前
激动的xx完成签到 ,获得积分10
5分钟前
涛老三完成签到 ,获得积分10
5分钟前
5分钟前
ZYP应助科研通管家采纳,获得10
5分钟前
6分钟前
蓝胖子完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455081
求助须知:如何正确求助?哪些是违规求助? 4562276
关于积分的说明 14284999
捐赠科研通 4486239
什么是DOI,文献DOI怎么找? 2457270
邀请新用户注册赠送积分活动 1447880
关于科研通互助平台的介绍 1423164