Brugada综合征
调节器
遗传增强
医学
心肌病
内科学
生物
心脏病学
基因
生物信息学
心力衰竭
遗传学
作者
Gang Yu,Susmita Chakrabarti,Miroslava Tischenko,Ai-Lan Chen,Zhijie Wang,Hyosuk Cho,Brent A. French,Sathyamangla V Naga Prasad,Qiuyun Chen,Qing Wang
出处
期刊:Science Translational Medicine
[American Association for the Advancement of Science (AAAS)]
日期:2022-06-08
卷期号:14 (648)
被引量:21
标识
DOI:10.1126/scitranslmed.abf3136
摘要
Brugada syndrome (BrS) is a fatal arrhythmia that causes an estimated 4% of all sudden death in high-incidence areas. SCN5A encodes cardiac sodium channel Na V 1.5 and causes 25 to 30% of BrS cases. Here, we report generation of a knock-in (KI) mouse model of BrS ( Scn5a G1746R/+ ). Heterozygous KI mice recapitulated some of the clinical features of BrS, including an ST segment abnormality (a prominent J wave) on electrocardiograms and development of spontaneous ventricular tachyarrhythmias (VTs), seizures, and sudden death. VTs were caused by shortened cardiac action potential duration and late phase 3 early afterdepolarizations associated with reduced sodium current density ( I Na ) and increased Kcnd3 and Cacna1c expression. We developed a gene therapy using adeno-associated virus serotype 9 (AAV9) vector-mediated MOG1 delivery for up-regulation of MOG1, a chaperone that binds to Na V 1.5 and traffics it to the cell surface. MOG1 was chosen for gene therapy because the large size of the SCN5A coding sequence (6048 base pairs) exceeds the packaging capacity of AAV vectors. AAV9- MOG1 gene therapy increased cell surface expression of Na V 1.5 and ventricular I Na , reversed up-regulation of Kcnd3 and Cacna1c expression, normalized cardiac action potential abnormalities, abolished J waves, and blocked VT in Scn5a G1746R/+ mice. Gene therapy also rescued the phenotypes of cardiac arrhythmias and contractile dysfunction in heterozygous humanized KI mice with SCN5A mutation p.D1275N. Using a small chaperone protein may have broad implications for targeting disease-causing genes exceeding the size capacity of AAV vectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI